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Abstract

This review examines the biology of the Fat mass- and obesity-associated gene (FTO), and the implications of
genetic association of FTO SNPs with obesity and genetic aging. Notably, we focus on the role of FTO in the
regulation of methylation status as possible regulators of weight gain and genetic aging. We present a theoretical
review of the FTO gene with a particular emphasis on associations with UCP2, AMPK, RBL2, IRX3, CUX1, mTORC1
and hormones involved in hunger regulation. These associations are important for dietary behavior regulation and
cellular nutrient sensing via amino acids. We suggest that these pathways may also influence telomere regulation.
Telomere length (TL) attrition may be influenced by obesity-related inflammation and oxidative stress, and FTO
gene-involved pathways. There is additional emerging evidence to suggest that telomere length and obesity are bi-
directionally associated. However, the role of obesity risk-related genotypes and associations with TL are not well
understood. The FTO gene may influence pathways implicated in regulation of TL, which could help to explain
some of the non-consistent relationship between weight phenotype and telomere length that is observed in population
studies investigating obesity.
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Background
Genetic background is important in understanding
metabolic pathways that regulate adiposity [1, 2].
Telomere length attrition may be influenced by obesity-
related inflammation and oxidative stress. There is emer-
ging evidence to suggest that telomere length (TL) and
obesity are bi-directionally associated [3–5]. However,
the role of regulatory obesity genotypes and associations
with TL are not well understood. Across genetic associ-
ation studies of obesity, there is considerable obesity
phenotype variance [6, 7]. Factors such as gene drift,
environment, migration or ethnicity may in part be
responsible for such obesity phenotype variance [8–10].
Alternatively, TL-obesity relationship could theoretically
be influenced by gene methylation levels, which in turn
could affect genes, due to the characteristics of, for
example, permitting changes which affect gene function
but at the same time do not modify DNA sequences.
The fat mass and obesity associated (FTO) gene is a
likely example of a regulatory “master switch” gene that

influences epigenetic control over a number of key regu-
latory pathways in obesity regulation. We have recently
demonstrated that FTO genotype is not associated with
FTO methylation levels [11]. In order to understand
how FTO may be associated with TL it is important to
consider the role of the FTO gene in the context of its
function, regulation and obesity.
FTO has been correlated with metabolic syndrome

and diabetes risk [12, 13]. The genetic link to metabolic
balance and adiposity homeostasis is important for
chronic diseases and also regulation of telomere length
[9, 13, 14], since there is an association between shorter
telomeres and increased body mass index, increased
adiposity, and increasing waist to hip ratio and visceral
excess fat accumulation [15]. Additionally, the biochem-
ical abnormalities of obesity, for example, abnormal
glycemic and lipidemic profiles, lead to organ dysfunc-
tion resembling the accelerated aging process [15]. An
emerging hypothesis links obesity, shorter telomeres and
accelerated aging [16], however, the manner in which
the FTO gene fits into this hypothesis remains to be
fully elucidated.* Correspondence: reperfusion@hotmail.com
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GWAS and FTO associations with obesity
The FTO gene expresses a 505 amino acid protein that
shares sequence motifs with Fe(II)- and 2-oxoglutarate
(2-OG) dependent dioxygenases [17, 18]. This enzyme
family can repair alkylated DNA and RNA by oxidative
demethylation, an important mechanistic process in epi-
genetic regulation of genes [18–22], suggesting that FTO
may be involved in DNA/RNA demethylation [21].
FTO has been clearly identified as an obesity associ-

ated gene via Genome Wide Association Study (GWAS)
[23–25]. The application of GWAS led to the under-
standing that a number of variants in the first intron of
the FTO gene may be associated with adiposity, for ex-
ample, each additional copy of the rs9939609 risk allele
is associated with increased BMI of ~0.4 kg/m2 [23–25].
Subsequently, at least 75 obesity susceptibility loci [9,
26] have been described across the genome. However,
FTO appears to have a greater effect on obesity
compared to all other obesity loci and this has been
confirmed through replication studies throughout the
life span and across ethnicities [27–32].
The FTO rs9939609 SNP is the most commonly

reported population obesity gene in association studies.
The risk allele (A allele) of rs9939609 is associated with
greater total energy (food intake), and increased protein
and fat intake in children and adults [33–36]. FTO
SNPs, mainly located in intron 1, have been reported to
be associated with individual variation in appetite rating
scales, loss of control over eating, as well as eating in the
absence of hunger [33, 35, 37–47]. It has been observed
that children and adolescents that carry the FTO
rs9939609 A allele (AA or AT genotype) self-select more
energy dense components of a test meal [45, 46]. In
adults, the A allele carriers are more likely to demonstrate
a loss of control of eating [46], altered postprandial satiety
levels [39], increased feeling of hunger [47] and reduced
fullness self-ratings [48]. The FTO rs9939609 AA
genotype is associated with activity of neural substrates
associated with food-cue reactivity [49–51].

FTO associations with amino acids
Amino acids play a role in central regulation of food in-
take - the understanding how amino acids may influence
FTO signaling is not well understood. FTO catalyzes the
oxidation reaction of methyl DNA/RNA substrates,
together with co-factors 2-OG, Fe (II) and oxygen [52].
Early studies presumed that FTO likely functions as an
intracellular sensor by assessing the concentration of 2-
OG, which is a key intermediate of the citric-acid cycle.
Studies using mouse and human cell lines demonstrated
that by restricting total amino acids in the medium there
was significant downregulation of mRNA and protein
expression of FTO in vitro [53], consistent with FTO

being a sensor of amino acids, instead of possibly being
a 2-OG, within cells [54].
The importance of amino acids are starting to be rec-

ognized in metabolic systems, for example, a reduction
in leucine in mouse models increases hepatic insulin
sensitivity via general control non-depressible 2 (GCN2)
/mammalian target of rapamycin (mTOR) and AMP-
activated protein kinase (AMPK) pathways [55]. These
pathways involve nutrient-responsive protein kinases
and are important for proper regulation of glucose me-
tabolism in mammals at both the hormonal and cellular
level (see below) [56]. Phenylalanine is also a significant
circulating amino acid that declines with weight loss
[57], although there is a lack of evidence to suggest a
direct interaction with FTO pathways. For example,
fasting over 72 h results in an increase in phenylalanine
and an associated decrease in skeletal mTOR activity
and cell growth signaling [58].

FTO signaling pathways
FTO regulates energy sensors in the central nervous system
Global energy sensors in the central nervous system
include mammalian target of rapamycin (mTOR), AMP-
activated protein kinase (AMPK), and uncoupling
protein 2 (UCP2) [59]. Interestingly, these three sensors
are all likely to interact with the FTO gene both directly
or indirectly. FTO-overexpressed cells are insensitive to
amino acid deficiency under the regulation of the
mammalian target of rapamycin complex 1 (mTORC1)
signaling pathway, a major regulator of cell growth and
basic catabolic mechanisms [60, 61]. As eluded to above,
while there is an association between mTOR and
phenylalanine in fasting states, FTO obesity-risk SNPs
are reported to affect AKT expression of interacting pro-
tein (AKTIP) in an allele-dosage manner by altering the
binding site of the transcription factor Cut Like Homeo-
box 1 (CUX1) [62]. This influences the phosphorylation
of AKT’ regulation sites, likely modulating AKT activity
via an AKT-AKTIP direct interaction [63].

FTO-downstream mTORC1 influences obesity
The mTORC1 complex itself plays a complex role in
obesity. For example, DEP-domain containing mTOR-
interacting protein (DEPTOR) functions to suppress
mTORC1’s function [64]. Consequently, this inhibits the
mTORC1 negative feedback loop, resulting in increased
insulin signaling and Akt/PKB activation [64]. Mecha-
nisms underlying FTO expression regulation by amino
acids and interactions with mTORC1 are not entirely
clear. A primary hypothesis is that FTO is an amino acid
(AA) sensor coupling AA levels to mTORC1 [65].
mTORC1 is involved in cell cycle regulation, for ex-
ample, nutritional signaling through target of rapamycin
complex 1 (TORC1) in yeasts permits a cellular check
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point regulatory choice for a cell to either continue
replication in the presence of DNA damage or cell cycle
arrest to maintain genetic stability [66]. Furthermore,
because of the role of mTORC1 in genetic stability, it is
possible that mTORC1 will also have an influence on
telomere regulation [67]. FTO SNPs have been clearly
associated with greater food intake and increased hun-
ger, but not with decreased resting energy expenditure
or low physical activity in human population studies
[68]. This paradox of FTO function might be explained
by the interaction of FTO with diverse functions of
mTORC1.
The metabolism of glucose and glutamine, and pri-

mary carbon sources utilized by mitochondria, is directly
regulated by mTORC1 [69]. The activity of the mTOR
kinase itself, an essential component of mTORC1, is in-
creased by cellular adenosine triphosphate (ATP) levels
[70]. Additionally, FTO-variant linked obesity may be
associated with altered metabolic functions through
activation of downstream metabolic mediators includ-
ing AMPK [71]. The gastrointestinal tract “hunger
hormone”, ghrelin, alters hypothalamic mitochondrial
respiration in neurons in an UCP2-dependent man-
ner. This process is driven by a hypothalamic fatty
acid oxidation pathway, that involves AMPK, CPT1
and free radical scavenging by UCP2 [72]. Further-
more, mTORC1 activation is associated with in-
creased oxygen consumption [73]. In summary, we
hypothesize that global energy sensors, AMPK, UCP2
and mTORC1, are likely to be influenced by FTO
gene regulation, supporting the hypothesis that FTO
functions in the process of obesity.

IRX 3 and IRX 5 bridge FTO and obesity
An alternate explanation for the discrepancy in FTO
SNP polymorphisms and regulation of energy expend-
iture is via the effect of the obesity-associated FTO re-
gion on expression regulation of homeobox gene IRX3
(Iroquois homeobox protein 3) and IRX5. A SNP within
intron 1 of the FTO gene alters the expression of IRX3
and IRX5 to regulate adipocyte thermogenesis via
influencing adipocyte differentiation [74]. Indeed, Irx3-
deficient mice were found to lose 25 to 30% of their
weight, due to an increase in basal metabolic rate. The
hypothalamic expression of a dominant-negative form of
Irx3 reproduces the metabolic phenotypes of Irx3-
deficient mice [75], suggesting hypothalamic expression
of FTO possibly plays an important role in adiposity
regulation via Irx3 pathways.

FTO and hunger-related hormone signaling
Interestingly, mTORC1 is a major intracellular target for
hormones and nutrients that regulate food intake and
body weight in the hypothalamus [73]. Additionally,

hypothalamic CUX1 expression influences leptin recep-
tor trafficking, resulting in altered leptin signaling in
mice, which modulates eating behavior [76]. These
findings provide more evidence to explain the diverse
influence of FTO SNPs on energy balance regulation.
Both mouse Fto and human FTO mRNA are expressed

ubiquitously, but FTO expression is higher in the brain
and specifically the hypothalamus [18, 77]. This regional
distribution for expression is intriguing because the
hypothalamus plays a key role in the regulation of both
energy balance and control of food intake.
There is a lack of support for the idea that human

FTO expression is regulated at the transcriptional level
in a leptin-dependent manner. Leptin inhibits hunger,
and if it has an effect it appears to be indirect. The
relationship between leptin and FTO expression has
been explored extensively in rodents, but no clear
consensus emerges concerning this relationship. For ex-
ample, leptin reduces FTO expression in the hypothal-
amus by activating the STAT3 signaling pathway, in
which the Leptin Receptor Long Isoform (LepRb) is also
required [78]. Paradoxically, Fto knock-out mice develop
features of metabolic syndrome that are normally ob-
served in leptin deficient mice [37]. Mice studies have
identified that a fed state is associated with increased
hypothalamic Fto mRNA expression, while extended cal-
oric restriction reduces hypothalamic Fto protein expres-
sion in Leptin-knockout mice (Lepob) [18, 79]. This
latter response is absent in Leptin receptor-mutated
mice (Leprdb) [79]. In contrast, Fto expression is
increased within the hypothalamus of food-restricted
and food-deprived rats [80]. Interestingly, an alternate
observation reveals an over-expression of Fto mRNA
and protein in the rat hypothalamus due to 48 h fasting
[81], whilst 40% reduced Fto expression in rat arcuate
nucleus of the hypothalamus increases food intake by
16% [82]. These cumulative findings may be explained
by a difference in mRNA versus protein FTO expression,
as a consequence of complex FTO gene regulatory
mechanisms.
In the transgenic Fto-overexpressing mouse model,

greater food intake induces a gene-dose-response in-
crease in body fat mass [83]. Weight gain in humans
may be because of an endocrine balance shift from the
satiety hormone leptin toward the hunger-promoting
hormone ghrelin. Intriguingly, Karra et al. observed
rs9939609 AA and TT genotypes showed divergent
neural activity in response to circulating ghrelin, which
is a key mediator of ingestive behavior [49]. In summary,
these data support the concept of fine tuning of hypo-
thalamic neurons to facilitate metabolic regulation by
altering their own activities or the activities of upstream/
downstream targets in response to hormonal and
nutrient signals.
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FTO and TL regulation
Fe(II)- and 2-OG dependent dioxygenase family and
TL regulation
Fe(II)- and 2-OG dependent dioxygenase family mem-
bers are involved in diverse processes, including DNA
and RNA repair, fatty acid metabolism, posttranslational
modifications and demethylation of CpG islands [84, 85].
CpG methylation is associated with gene silencing or CpG
demethylation with increased transcription. It is possible
that a methylation or demethylation status switch that
alters expression of TL regulation-related genes, via 2-OG
dependent dioxygenase, is involved in telomere attrition
process. The relationship between FTO, a 2-OG
dependent dioxygenase, and telomere length regulation is
still not elucidated.
One known 2-OG dioxygenase family of proteins that

has been associated with regulating TL is the Ten-Eleven-
Translocation (TET) proteins, Tet1, Tet2 and Tet3 [86].

Tet proteins act as DNA demethylation enhancers that
can influence telomere homeostasis. Functionally, mouse
embryonic stem cells deficient for all three Tet proteins
(Tet triple knockout) have been shown to exhibit in-
creased telomere-sister chromatid exchange and elongated
telomeres [86]. Similar to Tet, the 2-OG dependent dioxy-
genase catalytic activity of FTO may regulate gene tran-
scription or TL regulation via nucleic acid demethylation.
For example, DNA methylation can directly affect
transcription factor binding, or indirectly change post-
translational histone packaging and modulation of chro-
matin conformation and function [87, 88]. Identification
of epigenetic modifications may aid the exploration of
genotype-phenotype interactions in metabolic disease
relevant to obesity and telomere regulation. Gerken et al.
has made the valid observation that breakdown of
genomic repair processes may be associated with suscepti-
bility to obesity and metabolic syndrome [18].

Fig. 1 FTO gene interacts with telomere length and obesity. FTO interacts with uncoupling protein 2 (UCP2), AMP-activated protein kinase
(AMPK), retinoblastoma-like 2 protein (RBL2), Iroquois homeobox protein 3 (IRX3), cut like homeobox 1 (CUX1) and mammalian target of rapamy-
cin complex 1 (mTORC1). These interactions are important for dietary behavior regulation and cellular nutrient sensing. Additionally, the hypoth-
esis is presented that the FTO genotype may influence telomere regulation. Bold arrow means there is published evidence; dotted arrow means
there is rational speculation but without published evidence
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FTO regulates TL indirectly
Interestingly, FTO may influence TL regulation via
expression of upstream/downstream flanking genes. For
example, FTO rs8050136 (without altering FTO expres-
sion) correlates with the expression of retinoblastoma-
like 2 protein (Rbl2) gene [89]. The Rbl2 gene is
approximately 270,000 base pairs distant from FTO [89].
Rbl2 inhibits Dnmt3a,3b expression, and interestingly
this interaction influences telomere regulation, involv-
ing significant genomic hypomethylation, including in
the subtelomeric regions. Telomeric phenotypes char-
acterized by increased telomere recombination and
length are observed [90]. The capacity of Rbl1 and
Rbl2 to regulate telomere function has been further
explored using mouse embryonic fibroblasts deficient
in Rbl1 and Rbl2, where markedly elongated
telomeres were observed in the absence of increased
telomerase activity and the retention of their end-
capping function. Taken together, these data confirm
the role of the Rb1 family in the regulation of
telomere length in mammalian cells [91], suggesting
that FTO may influence mammalian TL regulation
processes.

Conclusion
We have previously reviewed the bi-directional inter-
actions between diabetes and short telomeres [16].
We suggest in this review the possibility that FTO
genotypes may be associated with genetic aging, i.e.
shorter telomeres (Fig. 1). Dlouha et al. reported that
carriers of at least one FTO risky (rs17817449 G)
allele, is associated with shorter telomeres in middle
age women [14]. Additionally, Zhou and colleagues
found the relationship between FTO obesity-related
risk allele (rs9939609 A) and shorter telomere length
only in the high, but not low, FTO methylation levels
in non-diabetics [11].
Importantly, we have discussed downstream genes

and bi-directional feedback loops that influence obes-
ity outcomes across FTO genotypes. FTO feedback
loops may in part also be involved in telomere regula-
tion. Certainly we have previously highlighted a role
for UCP2 in telomere regulation [92] and currently in
this review we relate UCP2 to obesity regulation. Bell
et al. identified an FTO obesity susceptibility haplo-
type is associated with increases in methylation of the
FTO gene [88]. Further well-designed and detailed
studies in humans and animals are required to explore
biochemical and functional roles of FTO genotypes and
interactions with FTO epigenetic modification. We
suspect these epigenetic FTO interactions with the FTO
gene will have modifiable effects on obesity and telomere
attrition.
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