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Hypoxemic reperfusion of ischemic states:
an alternative approach for the attenuation
of oxidative stress mediated reperfusion
injury
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Abstract

Ischemia and reperfusion (I/R) — induced injury has been described as one of the main factors that contribute to
the observed morbidity and mortality in a variety of clinical entities, including myocardial infarction, ischemic stroke,
cardiac arrest and trauma. An imbalance between oxygen demand and supply, within the organ beds during
ischemia, results in profound tissue hypoxia. The subsequent abrupt oxygen re-entry upon reperfusion, may lead to
a burst of oxidative aggression through production of reactive oxygen species by the primed cells. The predominant
role of oxidative stress in the pathophysiology of I/R mediated injury, has been well established. A number of strategies
that target the attenuation of the oxidative burst have been tested both in the experimental and the clinical setting.
Despite these advances, I/R injury continues to be a major problem in everyday medical practice. The aim of this paper
is to review the existing literature regarding an alternative approach, termed hypoxemic reperfusion, that has exhibited
promising results in the attenuation of I/R injury, both in the experimental and the clinical setting. Further research to

clarify its underlying mechanisms and to assess its efficacy in the clinical setting is warranted.
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Background

Tissue hypoxia due to ischemia is the common denom-
inator in a variety of clinical emergencies of either re-
gional distribution such as myocardial infarction and
mesenteric embolism, or of systemic involvement such
as cardiac arrest and hemorrhagic shock, both of which
represent the equivalent of whole body ischemia.

The aforementioned conditions are sometimes fatal
because of the injury that lurks to appear, the so called
ischemia — reperfusion (I/R) injury. This represents some-
how, the cost of optimal reperfusion or effective resuscita-
tion from longstanding insults of ischemia. Reperfusion
injury does not occur during the preceding ischemic
period; rather, this injury refers to a causal event associ-
ated with reperfusion. This event may result in a number
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of detrimental effects including multiple organ failure
(MOF) and death. Over the last several decades, a variety
of treatment modalities have been evaluated to attenuate
I/R injury. Hypoxemic reperfusion, in particular, may be
particularly promising. The aim of this review is to
summarize the existing literature regarding the underlying
mechanisms and potential applications of hypoxemic re-
perfusion in a variety of clinical scenarios of regional and
systemic I/R injury.

Review

Strategies of reperfusion injury prevention

Reactive oxygen species have been found to play a key
role in the pathophysiology of I/R injury [1]. Oxidative
stress generated during reperfusion, may mediate injury
to the insulted tissues. This phenomenon is part of the
term «oxygen paradox», in which reoxygenation of an
ischemic tissue produces a degree of injury that greatly
exceeds the injury induced by ischemia alone [2]. How-
ever, oxidative stress, contributes to I/R injury — induced
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damage in a consecutive two — phase pattern. In
addition to its direct cytotoxic effects, the burst of free
radicals, generated by oxidative stress, also induces the
formation of inflammatory mediators [3] through redox-
mediated signalling pathways, leading to post ischemia —
reperfusion inflammatory injury [2, 3]. These oxidative
and inflammatory responses have been implicated in the
development of MOF, a detrimental manifestation often
following I/R.

The above knowledge has led medical research to
focus on the development of potential strategies aimed
at eliminating the effects of reactive oxygen species
(ROS) and of the systemic inflammatory response during
reperfusion. Suggested methods include:

e use of antioxidants in order to minimize the
oxidative stress [4—7]

e scavengers for the removal of metabolic waste

e preconditioning techniques (ischemic, hypoxic,
pharmacologic and remote ischemic
preconditioning) to prepare cells to better respond
to the forthcoming stress [8—17]

Despite the proven beneficial effects, all the above
strategies share one common disadvantage: they lack ef-
fectiveness when they are applied after or during reper-
fusion/resuscitation. This limits their usefulness in the
clinical setting. Antioxidants should be administered
ideally before ischemia and reperfusion in order to
achieve their maximum effect. In fact, most available
evidence regarding their favorable effects derives from
studies in which antioxidants were used as pre-treatment
[5, 7]. Moreover, their use, even in combination with scav-
engers, does not completely abolish the ensuing injury. The
same applies for the use of preconditioning techniques.
The rationale of these techniques is to pre-medicate the
patient, which may not be feasible in all clinical scenarios.
Therefore, the application of these strategies in the clinical
setting may be limited [14-16, 18, 19]. A recent meta-
analysis questioned the efficacy of ischemic preconditioning
in the setting of liver surgery [20]. Similarly, remote ische-
mic preconditioning, a technique that held great promise
for its demonstrated favorable effects, did not exert the
expected outcomes when tested in clinical trials [21-23].

Despite the controversial results in the clinical setting,
the existing literature regarding these strategies provides
additional evidence, confirming the oxidative nature of the
injury following reperfusion. The pivotal role of oxidative
stress mediated reperfusion injury has been well estab-
lished. Using a rabbit experimental model, it was shown
that resuscitation from hemorrhagic shock resulted in
acute lung injury with enhanced oxidative and inflamma-
tory pulmonary responses. However, the degree of injury
correlated only with the extent of oxidative aggression [24].
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Hypoxemic reperfusion

Given that the abundance of oxygen supply, initially dur-
ing reperfusion, produces a burst of ROS generation, the
important question was whether this phenomenon could
be attenuated by manipulating the oxygen content in the
initial blood perfusate in order to meet with the adapted
-at low cellular energy level- needs during ischemia.

Over the last years, a growing body of literature exam-
ines the effect of ischemic post-conditioning, which
seems to be a promising approach [25-30]. This method
is based on the concept that gradual reperfusion of a
previously ischemic tissue, interrupted with short-lived
episodes of ischemia, might yield favorable results. A
closely related technique, termed “remote ischemic post-
conditioning”, involves initiation of transient episodes of
ischemia in a remote tissue or organ at the time of
reperfusion [31-34]. A third, relatively new approach,
similar to these is hypoxic post-conditioning, character-
ized by reperfusion under normoxia alternated with pe-
riods of hypoxia [35-38].

This is where hypoxemic reperfusion appears. It is
about gradually increasing the FiO, of the reperfusate
from a lower level in order to maintain P,O, levels of
30 — 35 mmHg, initially during reperfusion, to gradually
achieve P,0O, levels of 95 — 105 mmHg at the end of the
resuscitation period. Historically, the accepted dogma was
to give as much oxygen as possible to treat ischemic
states. However, to deliver oxygen in plenty, particularly
early in reperfusion, may only lead to higher quan-
tities of ROS. Therefore, the imperative is to supply
sufficient oxygen to meet tissue oxygen demand to
maintain vital functions while minimizing reperfusion
injury related to an abundance of ROS. Experimental
findings indicate a significant correlation between P,0,
and the phosphocreatine/inorganic phosphate ratio or
intracellular pH. However, for P,0, ranging from 130 to
33 mmHg, metabolite changes were not significant. Both
the ratio as well as the intracellular pH decreased signifi-
cantly when P,O, was lowered below 33 and 28 mmHg
respectively [39]. Moreover, the seemingly paradoxical
idea of hypoxemic reperfusion is very similar to the afore-
mentioned strategies of post-conditioning in terms of
physiology. What is common in these two methods is the
lower delivery of oxygen early during reperfusion so as
not to provide it in abundance to form ROS. How is this
possible? Delivery of oxygen is calculated by the following
formula: DO, = CO x C,04 (C,0, =13.4 x [Hb] x S,0, +
0.03 P,0O,). During post-conditioning the altered par-
ameter is the cardiac output (CO) through the grad-
ual reperfusion whereas during hypoxemic reperfusion
the altered parameter is S,0, and P,O, through the
gradual increase of FiO,.

The basic underlying concept of hypoxemic reperfu-
sion is that when reperfusion of a previously ischemic
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tissue takes place under hypoxemia, the cells will not be
supplied with an abundance of oxygen, which will be
available for ROS production (Fig. 1a). Alternatively, it is
hypothesized that the gradual reintroduction of oxygen in
increasing concentration during reperfusion, corresponding
to the increasing tissue requirements, may be used by the
mitochondria for the generation of ATP and the restoration
of the cell’s energy resources (Fig. 1b). Therefore, hypox-
emic reperfusion represents a strategy that can be applied
after the occurrence of the ischemic insult, at the beginning
of reperfusion. This could be a significant advantage when
compared to other reperfusion strategies, including the use
of antioxidants and preconditioning, since these techniques
need to be implemented before reperfusion to show their
beneficial effects [5, 7, 14—16]. Another potential advantage
of hypoxemic reperfusion compared to the use of an-
tioxidants, is that it aims to prevent ROS production
rather than eliminate their deleterious effects. Moreover,

Tissue Damage
Ischemia | Oxidative Stress
S Reperfusion IE—
Gradual Restoration of
1sehiaria: Cellular Energy Resources
l Rz
>
I Rcperfusion I
Fig. 1 Representation of biochemical events that lead to the production
of reactive oxygen species (ROS) and subsequent tissue damage during
ischemia and reperfusion (Panel a). Panel b represents the hypothesis of
restoration of cellular energy resources achieved by reperfusion of the
previously ischemic tissues under lower P,O, (hypoxemic reperfusion)
with gradual return to normoxemia
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hypoxemic reperfusion may be advantageous compared to
post-conditioning strategies since blood flow is restored
offering better replenishment from metabolic wastes.
However, apart from the theory, the method should
be examined in vivo. Indeed the existing evidence,
summarized in Table 1, exhibit remarkably favorable
results in various applications both in the experimental
and the clinical setting.

Gastrointestinal tract reperfusion injury

Ischemia — reperfusion induced injury of the gastrointes-
tinal tract can ensue from a variety of clinical conditions
such as mesentery artery embolism. In 1988, Perry et al.
showed, for the first time, that gradual reintroduction of
oxygen reduced reperfusion injury as evidenced by
decreased gastric mucosal bleeding after ischemia in a
cat experimental model [40].

A subsequent set of experiments, further demon-
strated the favorable effect of hypoxemic reperfusion in
the setting of I/R injury of the gastrointestinal tract. Spe-
cifically, using a porcine model of intestinal ischemia,
through clamping of the superior mesenteric artery [41,
42], it was shown that hypoxemic reperfusion resulted in
decreased gut barrier dysfunction as evidenced by the
lower incidence of positive Limulus test [41]. Both the
oxidative and the inflammatory responses were also at-
tenuated as demonstrated by the decrease in intestinal
mucosa malondialdehyde (MDA) [42] and portal blood
interleukin (IL) -1b levels [41]. The application of this
method resulted in a decrease of the observed histopath-
ologic injury not only of the intestine [41] but also of re-
mote organs such as the heart [42] and lung [41]. This
finding implies a systemic favorable effect and highlights
the potential role of hypoxemic reperfusion in the
prevention of MOF through attenuation of oxidative and
inflammatory responses. Furthermore, animals that under-
went hypoxemic reperfusion had a superior hemodynamic
profile as evidenced by mean arterial pressure preserva-
tion, lower need for inotropic support, and a trend to-
wards S O, restoration [42].

Brain reperfusion injury

The brain is thought to be the most vulnerable organ in
hypoxic challenges. Compromise of cerebral perfusion
and thus oxygen delivery may follow cardiac arrest, trau-
matic brain injury, ischemic stroke etc. In these cases, the
restoration of blood flow may lead to reperfusion injury.
The efficacy of gradual reintroduction of oxygen in the pre-
viously ischemic brain has been tested in a dog experimen-
tal model by Burda et al [43]. They used a global brain
ischemia model produced by cross-clamping of the left sub-
clavian artery and the brachiocephalic trunk at the point of
their emergence from the aorta and showed that the
animals that underwent reperfusion under hypoxemia
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Table 1 Summary of hypoxemic reperfusion studies
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Study

Type of study

Model of ischemia

Reperfusion protocol

Outcome

Perry et al. [40]

Douzinas et al. [41]

Douzinas et al. [42]

Burda et al. [43]

Douzinas et al. [44]

Douzinas et al. [45]

Hickey et al. [46]

Abdel-Rahman et al. [47]

Abdel-Rahman et al. [48]

Fercakova et al. [49]
Daxnerova et al. [50]

Marsala et al. [51]

Orendacova et al. [52]

Lukacova et al. [53]

Lehmann et al. [54]

Douzinas et al. [55]

Douzinas et al. [3]

Douzinas et al. [56]

Douzinas et al. [57]

Douzinas et al. [58]

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Clinical

Experimental
Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Experimental

Celiac artery ischemia through
adjustable screw clamp

SMA clamping

SMA clamping

Clamping of left subclavian artery
and brachiocephalic trunk

Global cerebral ischemic insult through

decrease of MAP, bilateral clamping
of carotid arteries and cessation
of respiration

Global cerebral ischemic insult through

decrease of MAP, bilateral clamping of

carotid arteries and cessation of respiration

Deep hypothermic circulatory arrest

Aortic clamping and cardioplegic arrest

CPB for CABG

Infrarenal aortic occlusion
Infrarenal aortic occlusion

Infrarenal aortic occlusion

Infrarenal aortic occlusion

Infrarenal aortic occlusion

Supraceliac aortic clamp

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

P5 O, =34 mmHg for 1 h before
return to normal perfusion

P, O, =30-35 mmHg with gradual
return to normoxemia over a 2 h
period

P, O, =30-35 mmHg with gradual
return to normoxemia over a 2 h
period

P, O, =375 mmHg with gradual
return to normoxemia over a
15-30 minute period

FiO, =0.12 with gradual increase to
achieve P,0, =100 mmHg overa 1 h
period

P, O, =30-35 mmHg with gradual
increase to achieve P,0, =100 mmHg
over a 1 h period

P, O, =40-50 mmHg throughout the
reperfusion period

P, O, =40-50 mmHg gradually
increased towards normoxemia over
a 10 minute period

P, O, =50 mmHg with return to
normoxemia over a 5 minute period

Graded postischemic reoxygenation
Graded postischemic reoxygenation

Graded postischemic reoxygenation

P, O, =48 mmHg with gradual return
to normoxemia over a 15 minute
period

P, O, =48+ 12 mmHg with gradual
return to normoxemia over a
30 minute period

P, O, =25-35 mmHg for 30 minutes
with gradual return to normoxemia
over a 90 minute period

FiO, =0.12 with gradual increase to
FiO, =0.21 over a 40 minute period

FiO, =0.08-0.10 with gradual
increase to FiO, =0.21 over a
60 minute period

FiO, =0.08-0.10 with gradual
increase to FiO,=0.21 over a
60 minute period

FiO, = 0.08-0.10 with gradual
increase to FiO, =0.21 over a
60 minute period

FiO, = 0.08-0.10 with gradual
increase to FiO,=0.21 over a
60 minute period

lgastric mucosal bleeding

lintestinal mucosa and
lung injury

linflammatory response
themodynamic profile
loxidative response
Imyocardial injury

tcerebral protein synthesis

tneurological outcome

loxidative response

Lcerebral injury

tcerebral injury

themodynamic profile
Imyocardial injury
loxidative response

loxidative response

Tneuroprotection
Tneuroprotection

Ineuropathological
damage

Tneuroprotection

Tneuroprotection

hemodynamic profile

themodynamic profile
loxidative response
linflammatory response
themodynamic profile
loxidative response
linflammatory response
loxidative response

linflammatory response

tvascular homeostasis

|oxidative response

{lung injury
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Table 1 Summary of hypoxemic reperfusion studies (Continued)
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Douzinas et al. [59] Experimental

Douzinas et al. [60]

Experimental

Luo et al. [61] Experimental

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

Hemorrhagic shock - exsanguination

FiO, = 0.08-0.10 with gradual
increase to FiO,=0.21 over a
60 minute period

loxidative response
linflammatory response
{lung injury

FiO, = 0.08-0.10 with gradual loxidative response
increase to FiO,=0.21 over a )
60 minute period linflammatory response

liver injury

FiO, =0.11 with gradual increase to
FiO, =0.21 over a 60 minute period

Lhemodynamic profile
—oxidative response

—inflammatory response

Table summarizes the data of the available studies of hypoxemic reperfusion presenting the setting, the model of ischemia - reperfusion injury studied, the

reperfusion protocol and the main outcomes

P, O; partial arterial oxygen pressure, SMA superior mesenteric artery, FiO, fraction of inspired oxygen, MAP mean arterial pressure, CPB cardio-pulmonary bypass, CABG

coronary artery bypass grafting

(P,O, =37.5 mmHg) with gradual return to normoxemia
(P,O, =82 mmHg) exhibited increased cerebral protein
synthesis. The favorable effect of hypoxemic reperfusion
has also been tested in a porcine experimental model of
global cerebral ischemia [44, 45], where hypoxemic reper-
fusion was found to result in improved neurological out-
come as evidenced by the superior Overall Performance
Category (OPC) score [44], decreased brain histopatho-
logic damage [45] and reduced lipid peroxidation [44].

There has, however, been one study in which hypox-
emic reperfusion was found to exacerbate neurological
injury [46]. In a porcine model designed to resemble the
clinical scenario of infants undergoing deep hypothermic
circulatory arrest with diminished cerebral blood flow as
employed during surgical intervention for complex
congenital heart lesions, investigators applied maintained
hypoxemic arterial oxygen tensions (P,O,, 40 - 50 mmHg)
throughout the reperfusion period without return to nor-
moxemia [46]. While this was found to lead to worse out-
comes, this method cannot be compared with other
studies in which the reperfusion took place under hypox-
emic conditions with gradual return to normoxemia.

Mpyocardial reperfusion injury
Myocardial reperfusion injury represents a devastating en-
tity encountered in the clinical setting as a result of various
conditions including percutaneous coronary intervention
after acute myocardial infarction and cardiac surgery. The
promising results of hypoxemic reperfusion have led to
testing of this strategy in the setting of myocardial reperfu-
sion injury, both in experimental and clinical studies.
Abdel — Rahman et al. used a porcine experimental
model of cardiopulmonary bypass with aortic clamping and
cardioplegic arrest to test the efficacy of the so-called grad-
ual reoxygenation in the attenuation of myocardial reperfu-
sion injury [47]. The results of their study indicate that
applying hypoxemia at the onset of the reperfusion period
with gradual return to normoxemia resulted in significantly

less impairment of myocardial function, decreased myocar-
dial injury and reduced oxidative damage.

The same group designed and conducted a prospective
study, using nineteen consecutive patients who underwent
cardiac surgery with cardiopulmonary bypass for sched-
uled coronary artery bypass grafting as the study’s popula-
tion [48]. Graded reoxygenation at the beginning of the
reperfusion period led to a decrease in myocardial oxida-
tive injury as signified by the lower MDA blood levels.

Generalized ischemia - reperfusion injury

Graded post-ischemic reoxygenation has also been the
topic of investigation by Mars$ala and his group in the
setting of aortic clamping induced ischemia. Using a
rabbit experimental model, they found that gradual reox-
ygenation during reperfusion after infrarenal aortic oc-
clusion, resulted in the preservation of the cytoplasmic
and nuclear structures of the lumbosacral dorsal root
ganglia neurons [49, 50]. In a similar model of aortic
clamping-induced spinal cord ischemia, they showed
that the application of gradual reoxygenation reduced
neuropathological damage [51], decreased blood — brain
barrier permeability [52] and attenuated neuronal ar-
gyrophilia and reperfusion injury — induced alterations
in neuronal organelles [53].

However, one study by Lehmann et al. using a porcine
model of complete lower torso ischemia, found that hypox-
emic reperfusion resulted in a deteriorated hemodynamic
profile, increased lactic acidosis and higher inotropic agents
requirements compared to normoxemic reperfusion [54].
A possible explanation for these findings which are dis-
crepant from that of other studies is that in this study,
there was a long aortic cross-clamp period, perhaps result-
ing in greater injury severity and ischemic insult.

Hemorrhagic shock - resuscitation
Hemorrhagic shock and resuscitation represents a model
of whole body I/R injury. In a pilot study, using a rat
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model of controlled hemorrhagic shock, hypoxemic resus-
citation resulted in superior hemodynamic stabilization
and less oxidative and inflammatory responses as evi-
denced by the decreased MDA and tumor necrosis factor
alpha (TNF-a) serum levels [55]. Similar results were
shown in a rabbit experimental model. Application of
hypoxemic resuscitation was associated with more effi-
cient blood pressure restoration as well as attenuation of
the oxidative insult exerted by normoxemic resuscitation
[3]. This was shown by the decreased production of ROS
as assessed by flow cytometry, reduced MDA and higher
ratio of reduced to total glutathione levels. Moreover, hyp-
oxemic resuscitation resulted in attenuation of the inflam-
matory response as evidenced by the significantly lower
serum levels of TNF-a, IL-1b and IL-6. These effects could
be attributed to the lower stimulation of p38 mitogen acti-
vated protein kinase (MAPK) — mediated production of
inflammatory cytokines by monocytes [56]. Additionally,
using this combined in vivo and in vitro model, it was
shown that the serum of normoxemically resuscitated ani-
mals could prime the otherwise inert U937 monocyte like
cells for the production of inflammatory cytokines. This
effect was abolished when the cells were incubated with
the serum drawn from animals that were resuscitated
under hypoxemic conditions, highlighting a favorable
systemic effect [56]. The beneficial role of this strategy in
the attenuation of the systemic inflammatory response is
also supported by the resulting lower serum levels of
angiopoietin-2, a key player in vascular homeostasis and
inflammation [57]. Systemic inflammatory response and
tissue hypoperfusion following ischemia and dysregulated
vascular endothelial function are the major contributors
of MOF. Taken together, these results could support the
hypothesis that hypoxemic reperfusion confers protection
against MOF through attenuation of the inflammatory re-
sponse and preservation of vascular homeostasis. Hypox-
emic reperfusion has also been found to protect from lung
injury and pulmonary dysfunction, which constitute a sig-
nificant problem encountered after resuscitation from
hemorrhagic shock [58, 59]. The favorable effects of
gradual reintroduction of oxygen, include preservation of
pulmonary capillary endothelial angiotensin converting en-
zyme activity, lower lung tissue myeloperoxidase (MPO)
activity, lower lung injury histopathological score and lower
MDA and intracellular adhesion molecule (ICAM) -1 and
vascular cell adhesion molecule (VCAM) -1 expression
levels. In another set of experiments, hypoxemic resuscita-
tion was associated with decreased bronchoalveolar lavage
(BAL) ROS levels as measured by flow cytometry as well as
reduced inflammatory cytokine levels including TNF-a, IL-
1b and IL-6. In addition, the nitrotyrosine score, as a
marker of nitrosative stress mediated injury, was higher in
the normoxemic resuscitation group of animals. Moreover,
another favorable effect of hypoxemic resuscitation from
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hemorrhagic shock is the prevention of post-ischemic liver
injury through the attenuation of nitrosative and oxidative
stresses [60]. These effects were evidenced by the lower
serum ROS and cytokines (TNF-a, IL-1b and IL-6) levels,
the lower hepatic MDA levels and the decreased hepatic
MPO and endothelial nitric oxide synthase (eNOS) and
inducible nitric oxide synthase (iNOS) expression. These
results, regarding the lower degree of injury of isolated or-
gans (i.e. lung and liver) also highlight the potential benefi-
cial role of hypoxemic reperfusion in the prevention of
MOFEF. More recently, Luo et al. [61] compared the effects
of normoxic, hyperoxic, hypoxemic and gradual resuscita-
tion from hypoxia to hyperoxia (gradually increased oxygen
administration — GIOA technique) in a rat experimental
model. The authors showed that hypoxemic resuscitation
resulted in worse hemodynamic profile as evidenced by the
significantly lower pulse pressure as well as lower liver
tissue oxygen partial pressure compared to GIOA resusci-
tation. The hypoxemic mode of reperfusion showed signifi-
cantly lower liver injury, oxidative and inflammatory
responses, only compared to hyperoxic resuscitation, while
no statistically significant differences were demonstrated
between GIOA and hypoxemic groups. However, the dis-
cordance between these results and previously published
data [3] could be attributed to the relatively shorter follow
up period in Luo’s study [61]. Longer follow up period in
that study, could eventually unmask detrimental effects of
the applied hyperoxemia in the context of GIOA, in con-
trast to normoxemia.

Conclusions

The pivotal role of oxidative stress mediated injury after
ischemia and reperfusion has been well established. Over
the last decades, medical research has focused on the
elucidation of the underlying pathophysiologic mecha-
nisms in an attempt to develop strategies to attenuate
this I/R injury. Hypoxemic reperfusion has been pro-
posed as a technique aimed at the elimination of the oxi-
dative burst that leads to the downstream cascade of
free radicals and inflammation leading to multiple organ
injury. This method has shown promise in various cases
of I/R injury both in the experimental and clinical
setting. However, further research both to clarify its
underlying basic mechanisms and to assess its efficacy
in the clinical setting is warranted.

Abbreviation

ATP: adenosine triphosphate; BAL: bronchoalveolar lavage; C,O,: arterial
oxygen content; CO: cardiac output; DO,: oxygen delivery; eNOS: endothelial
nitric oxide synthase; FiO-: fraction of inspired oxygen; GIOA: gradually
increased oxygen administration; Hb: hemoglobin; I/R: ischemia - reperfusion;
ICAM: intracellular adhesion molecule; IL: interleukin; iNOS: inducible nitric oxide
synthase; MAPK: mitogen activated protein kinase; MDA: malondialdehyde;
MOF: multiple organ failure; MPO: myeloperoxidase; OPC: overall performance
score; P,O,: partial arterial oxygen pressure; ROS: reactive oxygen species;

S.05: arterial oxygen saturation; S O,: mixed oxygen venous saturation;

TNF: tumor necrosis factor; VCAM: vascular cell adhesion molecule.
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