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Abstract

its structure-function relationship.

Integrins mediate leukocyte accumulation to the sites of inflammation, thereby enhancing their potential as an important
therapeutic target for inflammatory disorders. Integrin activation triggered by inflammatory mediators or signaling
pathway is a key step to initiate leukocyte migration to inflamed tissues; however, an appropriately regulated
integrin deactivation is indispensable for maintaining productive leukocyte migration. While typical integrin
antagonists that block integrin activation target the initiation of leukocyte migration, a novel class of experimental
compounds has been designed to block integrin deactivation, thereby perturbing the progression of cell migration.
Current review discusses the mechanisms by which integrin is activated and subsequently deactivated by focusing on
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Introduction

Integrins are the largest family of cell adhesion molecules
that mediate cell-to-cell and cell-to-matrix interactions in
a broad range of biological phenomenon such as host
defense, hemostasis, wound healing, angiogenesis, organ
development [3, 29, 43, 63, 73]. These functions are
achieved via integrin bidirectional signaling across plasma
membrane [34, 55]. Inside-out signaling takes place upon
association of intracellular activators (e.g, talin, kindlins)
with integrin cytoplasmic domains, leading to transition of
integrin conformation to high affinity for binding ligands.
Upon ligand binding, integrins undergo clustering and
transmit their outside-in signals to the cytoplasmic do-
mains, leading to forming focal adhesions that connect to
actin filaments for many cellular processes. While integ-
rins are expressed virtually in all cell types, a subset of
integrins including aLB2, aMp2, a4f1, and a4f7 are pre-
dominantly expressed on leukocytes, thereby regulating
immune cell trafficking to lymphoid tissues and sites of
inflammation.
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Integrins play a critical role in the regulation of extrava-
sation of leukocytes to sites of inflammation [5, 11, 12].
During rolling along the endothelial cells via selectins, leu-
kocytes encounter chemokines expressed on endothelial
cells [87]. The integrin activation by chemokine enables
abrupt arrest of cells on endothelial integrin ligands.
Subsequently adherent leukocytes leave the initial point
of arrest, and, thereby, crawl along the endothelial apical
surface to a so-called hot spot where they undergo trans-
migration across the endothelial cells [69]. Crawling and
transendothelial migration (TEM) requires a dynamic bal-
ance of up- and down-regulation of cellular adhesiveness
that is achieved by not only integrin activation but also
properly regulated integrin deactivation [52]. Here we
review the molecular mechanisms that regulate integrin
activation and deactivation.

Review

Leukocyte interaction with endothelial cells to enter
inflamed tissues

Leukocyte interaction with endothelial cells represents
early events during inflammation or immune surveillance
and occurs through selectin-mediated rolling, chemokine-
driven activation, and integrin-dependent arrest [37, 44, 82].
Binding of chemokines to G protein-coupled receptors
(GPCRs) triggers rapid arrest of rolling leukocytes in
which leukocyte integrins (e.g, aLp2 or a4f1) are activated
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to adhere to the ligands such as intercellular adhesion
molecule 1 (ICAM1) or vascular cell-adhesion molecule
1 (VCAM]1) on endothelial cells [65]. Leukocytes undergo
intravascular crawling via aMp2-ICAM1 interaction until
finding the “hot spots” proper for emigrating into inflamed
tissues [53]. Leukocyte integrins, aLf2 and o4f1, interact
with junctional adhesion molecules (JAMs) such as
JAM-A and JAM-B, respectively, on endothelial cells to
facilitate TEM of the leukocytes as a final step in the
homing cascade to inflamed tissues [40]. Formation of
an endothelial docking structure with actin-based mem-
brane protrusions is thought to raise efficiency of leukocyte
TEM during inflammation [10, 45].

Structure and conformational regulation of integrins

Integrins are a/p heterodimeric membrane proteins that
exhibit a characteristic feature of complex multi-domain
organization [76, 77]. Integrins on resting cells are main-
tained in a default inactive state, in which the headpiece
is folded back to the leg pieces [8], thereby exhibiting a
bent conformation (Fig. la). Of note, the cytoplasmic
parts of integrin « and [} subunits are associated, thereby
stabilizing the bent conformation [80]. In this inactive
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bent conformation, the ligand binding domain is not only
oriented unfavorable for interacting with ligand on the
opposing cells, but also in the low affinity configuration.
Upon integrin activation, the interface between headpiece
and tailpiece is opened in a switchblade-like movement,
thereby exhibiting an extended conformation, in which
the ligand binding headpiece is oriented favorable toward
the ligand on the opposing cells [7, 74]. The conversion
from the inactive bent conformation to the active ex-
tended conformation with open headpiece is triggered
by the separation of the a/p cytoplasmic domains [34, 79],
and is linked to the structural rearrangements in the
ligand binding domain that leads to the high-affinity
configuration (Fig. 1c). Along the course of activation
dependent conformation conversion from the bent con-
formation to the extended form with open headpiece,
an extended form with closed headpiece has been pro-
posed as an intermediate state that possess intermedi-
ate affinity to the ligand (Fig. 1b) [7, 74].

Half of the integrin o subunits and all of  subunits
possess a von Willebrand factor-type A domain, which is
also known as an inserted (I) domain [26, 67]. The a I
and P I domains adopt a Rossmann fold that contains a
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metal ion-dependent adhesion site (MIDAS) located on
the top, whereas its C- and N-terminal connections lo-
cated on the distal bottom face [25, 36, 67, 89]. The ability
of the I domain to bind ligand is regulated by conform-
ational changes. The affinity of the I domain for its ligand
is dramatically enhanced by a “piston-like” downward
axial displacement of its C-terminal helix. The C-terminal
downward shift is conformationally linked to the conver-
sion of the MIDAS to the high-affinity open configuration
[28, 66, 68, 83]. The C-terminal « helix contains an invari-
ant isoleucine residue at the bottom. The side chain of the
invariant isoleucine is deeply embedded to the hydro-
phobic pocket underneath the helix, thereby acting as a
ratchet that prevents the helix from moving down easily.
The invariant isoleucine serves as an important intrinsic
structural component to maintain a default low-affinity I
domain, thereby constituting the mechanisms of integrin
deactivation.

The association of the a and P integrin cytoplasmic
tails functions as a clasp that stabilizes the low-affinity
bent conformation. The arginine residue in the GFFKR
motif makes a salt bridge with the conserved acidic resi-
due (aspartate or glutamate) at the membrane proximal
region of the B cytoplasmic domain. The cytoplasmic salt
bridge plays a critical role in “clasping” the a/p cytoplas-
mic domains together, thereby serving as another intrinsic
structural component to maintain a default low-affinity in-
tegrin conformation [24, 38, 39]. The activation of chemo-
kine receptors initiates an intracellular signaling cascade
that eventually impinges upon the integrin cytoplasmic
tails. Binding to the integrin cytoplasmic domains of
adaptor molecules triggers a dissociation of the integrin
cytoplasmic tails, thereby triggering integrin activation
of the p I domain [9, 22, 85]. Activated B I domain
binds to an intrinsic ligand (a conserved acidic residue)
at the linker region connecting to the C-terminal helix
of the o I domain [62]. This inter-domain interaction
(i.e., binding of the p I domain to the intrinsic ligand)
facilitates the pulling down the C-terminal helix of the
a I domain, thereby inducing the high-affinity open MIDAS
conformation of the a I domain that is competent for the
external ligand.

Fine-tuning integrin activation and deactivation

Cell migration requires cycles of integrin activation and
deactivation [95]. A simplified view is that at the front of
migrating cells integrin activation takes place, thereby
mediating cell adhesion, while at the rear of those cells
integrin deactivation occurs, thereby facilitating cell de-
adhesion [47]. Several mechanisms are involved in the
regulation of the balance between activation and deactiva-
tion, thereby fine-tuning integrin-mediated cell adhesion
and migration.
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Talin is the cytoplasmic adaptor molecule that plays
the central role in triggering integrin activation. Talin is
a large, actin-binding, cytoskeletal protein that comprises
an N-terminal globular talin head that is connected, via
a long unstructured linker, to a C-terminal long tail-like
talin rod. The talin head contains 4 FERM domains (FO,
F1, F2, and F3) [19, 49]. The talin head F3 domain con-
tains a primary integrin binding site that directly inter-
act with the integrin § cytoplasmic tail. Talin head also
binds to the inner surface of the plasma membrane,
which is mediated by electrostatic attraction of a cluster
of basic residues in talin head domains with acidic plasma-
membrane phospholipids such as phosphatidylinositol 4,5-
bisphosphate (PIP2). To activate integrin only on demand,
talin binding to integrin needs to be regulated. In an in-
active state, talin adopts the auto-inhibition conformation
(Fig. 2a) [13, 18]. The auto-inhibition conformation in talin
is released by the presence of PIP2 [84]. This could be
made possible through recruitment of talin to PIP2-rich
membrane microenvironments that also contain integrins.
This pull-push model for talin activation is shown in
Fig. 2a. As an alternative to PIP2, some proteases in the
cytoplasm such as calpain or metalloproteinase-2 possess
a limited proteolysis effect to unmask the auto-inhibition
conformation of talin potentially liberating the talin head
available for integrin activation [72, 90]. Also, Rapl1-RIAM
complex plays an important role in chemokine- and TCR-
triggered up-regulation of integrin activity in leukocytes.
When talin is recruited to the plasma membrane upon
cellular signal, RIAM in the Rap1-RIAM complex binds to
the talin [91]. This binding activates talin to associate with
P integrin cytoplasmic tail, which mediates integrin ac-
tivation (Fig. 2b). The talin F3 domain primarily binds
the membrane-proximal NPXY motif of the integrin p
tail, and then forms a non-covalent interaction with a
conserved acidic residue at the membrane proximal re-
gion of the integrin B tail [4]. The salt bridge helps to
stabilize the talin-integrin interaction as well as unclasp
the salt bridge formed between the a and [ integrin
cytoplasmic tails (Fig. 2c). Thus, talin appears to utilize
the plasma membrane binding as a pivot point to exert
a robust effect on the integrin cytoplasmic tail. In this
way, talin causes the separation of the integrin a and p
cytoplasmic tails, thereby triggering integrin activation.

Kindlins (kindlin 1, kindlin 2, and kindlin 3) are an-
other family of FERM domain-containing proteins that
are predicted to adopt a similar structure to the talin head.
A hematopoietic cell-specific kindlin 3 has been found as
an integrin co-activator that cooperates with talin. Kindlin
3 is required for effector T cells in a4B1 and aLB2 integrin
binding to and stabilization of the interaction with ligand,
especially at low level of integrin ligand [46]. Kindlin binds
to the membrane distal NPXY motif of the B cytoplasmic
domain, as opposed to talin that binds to the membrane-
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proximal NPXY motif [93]. Kindlin does not compete
with talin for integrin and augments multivalent ligand
binding capacity by promoting the clustering talin-
activated integrins (Fig. 2d) [94]. In contrast to talin,
kindlin by itself is unable to induce the separation of the
integrin cytoplasmic association. Kindlin rather func-
tions as a co-activator to talin, thereby potentiating
talin-mediated integrin activation and cell adhesion [94].
Kindlin 1 is overexpressed in lung and colon carcinomas
and hence targeting kindlin 1 can be effective to restrain
metastasis in some cancers [71, 86]. Loss-of-function mu-
tations in kindlin1 caused Kindler syndrome (KS) in which
the keratinocytes from KS patients had a defect in motility
due to impaired activation of B1 integrin [23, 35, 70].
Kindlin 2 itself appears to involve in suppressing cancer
cell migration [21, 57], although little has been reported
for direct evidence on human disease related to the

genetic defect in the kindlin 2. An invasive breast can-
cer cell line (TMX2-28) highly expressed kindlin 2 that
played a critical role in cell invasion, since knocking
down of kindlin 2 repressed cell invasiveness [20]. Muta-
tions in kindlin 3 cause leukocyte adhesion deficiency
(LAD) type-III, a primary immune deficiency that manifests
unresponsiveness of agonist-triggered integrin-mediated
leukocyte adhesion and platelet aggregation [14, 42, 60, 75].
The kindlin 3 knockout mice exhibited the LAD-III like
phenotypes including perturbed integrin-mediated ad-
hesion of leukocytes to endothelial cells [48].

Suppression of integrin activation by interfering with talin
binding

This section describes cytoplasmic molecules that have
been shown to interfere with talin binding to integrins,
thereby stabilizing the inactive bent conformation.
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Phosphotyrosine-binding (PTB) domain-containing pro-
teins, Dokl (docking protein 1) and ICAP1 (integrin cyto-
plasmic domain-associated protein 1), have been shown,
like filamin, to compete with talin for binding to the integ-
rin cytoplasmic domain. Dokl has been shown to bind to
the NPXY motif [50]. However, only talin but not Dokl
stabilizes the open active conformation of integrin [85].
The inability to disrupt the clasping salt-bridge makes
Dokl unable to induce the separation of the integrin a/
cytoplasmic tails needed for activation. The mode by
which Dokl competes with talin is regulated by integrin
tyrosine phosphorylation. Binding of talin, but not of
Dokl, in integrin B tails is reduced by integrin tyrosine
phosphorylation [1]. Thus phosphorylation makes in-
tegrin inactive.

SHARPIN (SHANK-associated RH domain-interacting
protein) gene mutations naturally occurring in mice were
found to cause chronic proliferative dermatitis, a systemic
inflammation involving multiple organs [64]. More re-
cently, SHARPIN has been found as an inhibitor of in-
tegrin activation that interacts with the o integrin
cytoplasmic and, thereby, interferes with talin binding
to integrin and subsequent integrin activation [56].
SHARPIN binds to the o integrin membrane proximal
region that contains the conserved GFFKR motif to
form the clasping salt-bridge with the B subunit [56].
SHARPIN binding does not involve the arginine residue
in the GFFKR, thereby maintaining the formation of
the clasping salt-bridge [56]. Furthermore, SHARPIN
binding to the a integrin tail inhibits talin and kindlin
binding to the { integrin tail presumably through steric
hindrance [56]. SHARPIN deficiency has been shown
to enhance integrin-mediated cell adhesion and reduce
its migration velocity [54]. In addition to its role of in-
activating integrins, SHARPIN also functions as an ubi-
quitin binding protein that plays an important role in the
regulation of NF-«B signaling [30]. Thus, chronic inflam-
mation occurred in SHARPIN mutant mice could be due
to both aberrant integrin activation and NF-kB signaling.

Integrin intrinsic components to stabilize the default
inactive conformation

Cytoplasmic GFFKR motif

Integrin molecules contain the intrinsic structural compo-
nents that favor the default bent conformations, thereby
preventing spontaneous aberrant integrin activation in the
absence of proper stimulatory signals. The cytoplasmic
GFFKR motif constitutes an important intrinsic compo-
nent that facilitates integrin deactivation, thereby favoring
a default inactive conformation. Deletion of the GFFKR
motif or mutation of the arginine to alanine are designed
to disrupt the cytoplasmic salt bridge, and have been
shown to make constitutively active integrins as a result of
impaired deactivation (Fig. 3a).
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Physiological importance of such integrin deactivation
in immune cells has been studied using knock-in mice
carrying the mutant ol subunit lacking the GFFKR
motif (GEFKRYY; Lfa-199) [61]. Lfa-1¢ lymphocytes ex-
press the constitutively active aL2 that exhibited an im-
paired integrin deactivation that resulted in persistent cell
adhesion but reduced cell migration on ICAM1. When
inflammatory response was induced in the peritoneal
cavity, Lfa-19? mice showed less severe accumulation
of neutrophils compared with wild-type mice. Lfa-1/4
T cells showed increased contact time with APCs [2].
However, the increased T cell-APC contact time did not
induce productive lymphocyte activation and enhanced
proliferation but rather resulted in reduced T-cell prolifer-
ation. Thus, appropriate balance of aLp2 activation and
deactivation appears to be important for optimizing T-cell
migration and T cell-APC interactions. Notably, in an
allograft heart transplantation model, adoptively transferred
Lfa-1Y4 T cells exhibited reduced capacity to reject the
allograft [27].

The physiological importance of the cytoplasmic salt
bridge in the integrin a4 subunit was investigated in an-
other study that utilized knock-in mice that carry a spe-
cific point mutation in the a4 integrin GFFKR motif [31].
The mutant knock-in mice termed Itga4GFFKA (04-R974A)
showed impaired deactivation of a4f31 and a4f7 integrins
[31]. As a4f7 integrin is an important homing receptor to
the gut, ad"™* mice exhibited a perturbed lymphocyte
homing to the gut. On the other hand, naturally occurred
mutations in the GFFKR motif of the integrin olIbp3
subunit have been reported in the patients suffered with
congenital macrothrombocytopenia [32]. The platelet
integrin olIbP3 in the patients exhibited constitutively
active high-affinity state. This could cause aberrant plate-
let aggregation and consumption, potentially leading to
thrombocytopenia.

Invariant isoleucine residue

Invariant isoleucine in the o I domain C-terminal helix
is another intrinsic component for deactivation. The
isoleucine, through a series of hydrophobic interac-
tions (also known as ratcheting interactions), prevents
the C-terminal o7-helix from readily moving down,
thereby suppressing the conformational conversion to
the high-affinity integrin I domain (Fig. 3b). The knock-in
(Lfa-1"%* or aL-I306A) mice were generated that carried
a specific point mutation (substitution of the isoleucine to
arginine) in the integrin ol subunit I domain (Fig. 3b)
[52]. aLP2 deactivation was impaired in the Lfa-1'3064
lymphocytes, thereby showing a constitutively active cell
adhesion but reduced cell migration on endothelial cells.
During migration on ICAMI substrates, the Lfa-1'*°°*
lymphocytes exhibited an extremely polarized shape
characterized with an abnormally prolonged tail. This is
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because the uropod failed to readily detach from the
ligand substrates. Detailed two-photon in vivo imaging
demonstrated that Lfa-1%* lymphocytes showed en-
hanced arrest on the surface of the lymph node endothelial
cells, but failed to effectively crawl on and transmigrate
across the endothelial cells into tissue parenchyma. This
implicates the balance of activation and deactivation in
regulating integrin-mediated intravascular crawling that

constitutes an integral part of immune-surveillance in-
side the blood vasculature.

ADMIDAS

Unlike the a I domain, the p I domain contains two add-
itional metal binding sites, synergistic metal binding site
(SyMBS) and adjacent to MIDAS (ADMIDAS), at the ei-
ther side of the MIDAS, thereby forming has a linear
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cluster of three metal ion binding sites (Fig. 3c) [58, 88].
Of note, the ADMIDAS that coordinates Ca®* contrib-
utes to stabilizing the C-terminal helix in the low affinity
configuration, thereby serving as another intrinsic struc-
tural component [6]. The inhibitory effect of Ca®* to
integrins is thought to mediate through its coordination
to the ADMIDAS of the p I domain. Ca®* coordination
at the ADMIDAS in the p7 I domain was disrupted by
knocking-in a germline mutation of a functionally key
residue (Itgb7°'***; B7-D146A) (Fig. 3c) [51]. Itgh7°'**
lymphocytes showed the aberrantly activated a4f7 integ-
rin that exhibited perturbed migration on MAdCAM-1
substrates. The Itgb7°'*** T cells showed reduced cap-
acity to home to the gut and, thereby, decreased potential
to cause intestinal inflammation in a T-cell transfer colitis
model. Thus, in vivo perturbation of integrin deactivation
studied in a series of knock-in mice Lfa-19/9, Lfa-1"%64,
Itgh7°"*¢*, and Itgad“F* 4 all points to the anti-migratory
and anti-inflammatory phenotypes. This supports the idea
that intervention aiming to interfere with not only integrin
activation but also integrin deactivation would make an ef-
fective therapeutic approach for anti-inflammation.

Small molecules to modulate integrin activation

A small molecule agonist of aLp2, compound 4, showed
to act as a facilitator of ICAM1 binding by T cells and a
simultaneous inhibitor of TEM in a physiological con-
dition [92]. This was due to the finding that compound
4-mediated aLB2 accumulation in the uropod induced
its extreme elongation and the impaired de-adhesion of
human lymphocytes. Furthermore, leukadherin, a small
molecule agonist of another P2 integrin heterodimer
aMp2, induced the increased aMp2 dependent cell ad-
hesion of transfectants and of primary human and mouse
neutrophils, and the decreased chemotaxis and TEM
[41]. Also, TGE-P-related growth differentiation factor-15
(GDEF-15) has revealed to be the first cytokine that re-
presses the recruitment of inflammatory leukocytes to
inflamed tissues by blocking integrin activation [33].

Conclusions

The proper balance of activation and deactivation of
leukocyte integrins has been shown to be critical for sup-
porting efficient lymphocyte migration and trafficking. We
are beginning to understand how the integrin activators
(e.g, talin, kindlin) and inactivators (e.g., Dok1l, SHARPIN)
work together to promote either association or dissoci-
ation of the integrin a/p cytoplasmic tails, thereby regulat-
ing integrin conformational activation. The intramolecular
regulatory sites in integrins are essential for deactivation
of integrins. The importance of integrin deactivation in
immune cell trafficking to sites of inflammation and ac-
tivation has been shown in a series of knock-in mice, in
which the intramolecular integrin regulatory sites are
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mutationally disabled. Humanized monoclonal antibodies
to leukocyte integrins, natalizumab (a4) and vedolizumab
(a4p7), were efficacious in treating inflammatory diseases
including Crohn’s disease and ulcerative colitis [15-17, 59,
78, 81]. Small molecule integrin agonists have been re-
ported that interfere with integrin deactivation, thereby
suppressing leukocyte extravasation to inflamed tissues.
Blocking integrin deactivation might represent a novel
approach to alleviate inflammation.
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