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Abstract

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that have been found highly conserved
among species. MiRNAs are able to negatively regulate gene expression through base pairing of 3" UTRs of their
target genes. Therefore, mMiRNAs have been shown to play an important role in regulating various cellular activities.
Over the past decade, substantial evidences have been obtained to show that miRNAs are aberrantly expressed in
human malignancies and could act as “OncomiRs” or “Tumor suppressor miRs”. In recent years, increasing number
of studies have demonstrated the involvement of miRNAs in cancer metastasis. Many studies have shown that
microRNAs could directly target genes playing a central role in epithelia-mesenchymal-transition (EMT), a cellular
transformation process that allows cancer cells to acquire motility and invasiveness. EMT is considered an essential
step driving the early phase of cancer metastasis. This review will summarize the recent findings and
characterization of miRNAs that are involved in the regulation of EMT, migration, invasion and metastasis of cancer
cells. Lastly, we will discuss potential use of miRNAs as diagnostic and prognostic biomarkers as well as therapeutic

targets for cancer.
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Introduction

MicroRNAs (miRNAs) are highly conserved small non-
coding RNAs molecules naturally encoded in the gen-
ome of a variety of species. miRNAs function to affect
RNA stability and translation to negatively regulate gene
expression [1]. The miRNA maturation process requires
several steps. Initially, miRNAs are transcribed as a form
of long primary transcript (pri-miRNAs) from DNA by
the RNA polymerase II (Pol II) or Pol III enzyme [2,3].
The long pri-miRNA transcript is processed by a nuclear
RNase, Drosha, to generate pre-miRNAs with a stem-
loop hairpin secondary structure [4]. Pre-miRNAs are
then exported from nucleus to cytoplasm [5] where they
are trimmed into mature miRNAs (22 ~25 nt) by the
cytoplasmic RNase III, Dicer [6,7]. Mature miRNAs are
then incorporated into the RNA-induced silencing com-
plex (RISC) and exert their function by binding to the 3’
untranslated regions (3’'UTRs) of their target genes. The
binding could be either a partial complementarity,
thereby blocking the translation, or in a perfect comple-
mentarity, leading to degradation of the target mRNA
[8]. The imperfect match between miRNAs and their
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targets opens up the possibility for miRNAs to regulate
multiple genes. The ability to modulate gene expression
allows miRNAs to regulate various biological processes
including differentiation, proliferation, angiogenesis and
apoptosis [9]. Moreover, miRNAs have been shown to
play a crucial role during caner development and pro-
gression in the past decade [10-16].

Cancer is among the diseases accounting for top
mortality worldwide. An estimated 14.1 million new
cases of cancer were diagnosed worldwide with 8.2 mil-
lion deaths in 2012 [17]. More importantly, metastasis-
related death accounts for 90% of cancer mortality
[18-20]. Metastasis is an intricate multistep process
that requires cancer cells to a) detach from the primary
tumor and invade through basement membrane to
nearby tissue; b) enter the blood vessels (intravasation);
¢) survive in the circulation (anchorage independent
survival and growth); d) exit the circulatory system at
metastatic sites (extravasation); and e) colonize and
grow at the new environment and forming a metastatic
tumor (colonization) [18,21] (see Figure 1).

Despite our increasing understanding of metastasis, there
is still no effective ways or therapeutics to intervene
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Figure 1 The schematic of cancer metastasis: From primary site to disseminated organs.

metastatic processes. Gene signature and biomarkers
including miRNAs that are reliable in predicting pa-
tients’ outcome in metastasis are just beginning to be
unveiled.

For the role in cancer, Calin et. al first described that
miRNAs were deregulated in human B cell chronic
lymphocytic leukemia (CLL) by using a microarray con-
taining hundreds of human precursor and mature
miRNA oligonucleotide probes [22]. Since then miRNAs
have been shown to be involved in the regulation of
various cellular processes, and they are implicated in dif-
ferent diseases such as cardiac hypertrophy [23,24] , dia-
betes [25,26], Alzheimer’s disease [27,28], and hepatic
viral infection [29,30]. MiRNAs including those in blood
have been exploited as potential biomarkers for diagno-
sis and prognosis of diseases including cancers. Alter-
ation of miRNAs expression in different types of cancers
were subsequently reported [15,16,31]. Indeed, those
miRNAs deregulated in cancers were later shown to act
as oncogenes or tumor suppressors by suppressing their
target genes [32,33]. In recent years, studies of miRNA
functions and mechanisms have revealed their capacity
to affect molecular pathways regulating epithelial-
mesenchymal transition (EMT), which is a well-
characterized cellular transition that is thought to be im-
portant at the initial step of cancer metastasis [34,35].
Clinical observations have shown altered expression of
certain miRNAs correlating with poor prognosis of cancer
[10,14,36-38]. Therefore, miRNAs have a potential to
serve as cancer biomarkers [39-43].

In this review, we will focus on recent findings of miR-
NAs and their regulatory roles in cancer cell behaviors
that affect metastasis and discuss the potential of miR-
NAs as biomarkers as well as miRNA-based therapeu-
tics. The miRNAs known to be involved in distinct steps
of metastasis including EMT, migration/invasion, anoikis

survival, intravasation/extravasation and distant organ
colonization will be discussed.

Review

Role of miRNA in the EMT/MET, migration/invasion and
metastasis

microRNAs that control the EMT/MET processes

One of the most commonly accepted cellular transitioning
processes that drives the early phase of cancer metastasis
is the so-called epithelial-mesenchymal transition (EMT).
EMT induces changes in the shape and motility of epithe-
lial cells. Once transforming into mesenchymal phenotype,
cancer cells lose their cell-cell contact and become mobile
and invasive in order to spread into nearby tissues and
subsequently distant organs [35,44]. Outgrowth at the site
of distant dissemination requires metastatic cancer cells to
undergo mesenchymal-epithelial transition (MET), a re-
verse process of EMT, where they regain epithelial proper-
ties [45-47].

Repression of E-cadherin expression in epithelial can-
cer cells is a hallmark for EMT. Several molecules are
known to act as the repressor of E-cadherin expression
including ZEB, Twist, Snail, Slug and TGEF-f [48-54].
The miR-200 family (miR-200a/200b/200c/141/429) has
been shown to inhibit cell migration and invasion
through targeting ZEB in several cancer types including
breast, bladder and ovarian cancers [55-58]. MiR-200 in-
hibition was reported to reduce E-cadherin level while
promoting vimentin expression, thereby increasing cell
motility [57]. Moreover, miR-200 and ZEB have been
shown to form a reciprocal repression loop where ZEB
repressed miR-200 expression while miR-200 targets
ZEB [59] (see Figures 2 and 3). Thus, miR-200/ZEB
plays a central role in the EMT/MET processes. Many
reports further showed that ectopic expression of miR-
200 family alone was enough to block TGF-B-induced
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Figure 2 MicroRNAs that are known to regulate EMT/MET processes and their validated targets.

EMT [56,57,60]. In non-small cell lung cancer cells
and liver cancer cells, another miRNA, miR-30a, was
found to inhibit EMT by targeting Snail, thereby
promoting E-cadherin expression [61,62]. In addition,
miR-30a was also reported to suppress cell motility via
targeting vimentin expression in gastric cancer cells
[63]. In retinal pigment epithelium, miR-204/211 was
shown to maintain epithelial barrier function by targeting
TGEF-B2 and Slug and thus is suppressor of EMT [64].
Siemens and colleagues showed that ectopic expression
of miR-34a, a P53-regulated microRNA, could down-
regulate Snail levels, therefore, leading to inhibition of
EMT phenotypes including migration and invasion [65].
Furthermore, the same group demonstrated Snail bound
to E-boxes in the promoter of miR-34a to suppress its
expression. Therefore, miR-34a and Snail form a double
negative feedback regulation loop to regulate EMT [65]
(see Figures 2 and 3). In addition to EMT regulation, the
well-known property of miR-34a is its tumor suppressor
function via inducing cell cycle arrest and apoptosis in
various cancer types by targeting several molecules crucial

for sustaining tumor growth such as CDK4/6, MET,
HDACI, E2F3 and Bcl-2 [66-72] (Table 1).

miR-21, the first “oncomiR” to be identified, was
shown to play a role in promoting EMT. Inhibition of
miR-21 using antagomir in MDA-MB-231 invasive
breast cancer cells was able to reverse EMT and cancer
stem cell (CSC) phenotype by up-regulation of PTEN,
leading to inactivation of AKT/ERK [76]. In gastric car-
cinoma, miR-21 was shown to directly target RECK (re-
version-inducing-cysteine-rich  protein with kazal
motifs) expression to promote cell proliferation, migra-
tion and invasion [77]. miR-9, a MYC/MYCN-induced
miRNA, has been demonstrated to directly target E-
cadherin to promote breast cancer metastasis [73].
Clinical observations showed that miR-9 levels were in-
creased significantly in primary breast tumors of pa-
tients with subsequent metastasis compared to those
from metastasis-free patients [73]. miR-29a was also
shown to induce EMT of Ras-transformed mouse mam-
mary epithelial cells by targeting TTP (tristetraprolin)
expression [75]. In a colon cancer study, miR-9
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expression was activated by PROX1 (Prospero homeo-
box 1) and also leads to downregulation of E cadherin
[74] (Table 1).

Dicer, an essential RNase III enzyme for microRNA bio-
genesis, was recently shown to be associated with EMT.
Low level of Dicer was observed in breast cancer cells with
a mesenchymal phenotype [80]. One study showed that
miR-103/107 induced EMT by targeting Dicer expression,
leading to the decrease of miR-200 [78]. Moreover, miR-
103/miR-107 up-regulated ZEB levels in a miR-200-
dependent manner [78]. The miR-221/222 cluster has also
been shown to induce EMT in breast cancer cells by tar-
geting Dicer, ESR1 (estrogen receptor 1) and TRPS1

Table 1 miRNAs known to regulate EMT-related molecules

(trichorhinophalangeal syndrome type I) [79] (Table 1).
Most of those studies implicate the down-regulation of
suppressor miRNAs to promote tumorigenesis.

Aside from EMT transition, a reverse process of EMT
called MET (Mesenchymal-Epithelial-transition) has
been shown to be important for the colonization of
metastatic cells at distant organs. Recent reports have
demonstrated the involvement of miRNA regulation in
MET transition. Chen et al. showed that miR-103/107
directly targets MET inducer KLF4 and DAPK expres-
sion, leading to promoting metastasis [81]. miR-10b
could also promote esophageal cancer metastasis by tar-
geting KLF4 [82]. Those findings suggest that miRNAs

miRNAs Role of EMT regulation  Target (s) Cancer types

miR-9 Positive E-cadherin Breast cancer [73], colorectal cancer [74]

miR-29a Positive TTP Breast cancer [75]

miR-21 Positive PTEN, RECK Breast cancer [76], gastric cancer [77]

miR-103/107 Positive Dicer Breast cancer [78]

miR-221/222 Positive Dicer, ESR1, TRPS1 Breast cancer [79]

miR-30a Negative Snail, Vimentin Lung cancer [61], liver cancer [62], gastric cancer [63]
miR-34a Negative Snail, ZNF281, IL-6R  Colorectal cancer [65]

miR-200 family ~ Negative ZEB1/2, ERRFI-1 Bladder cancer [58], breast cancer [56,57], ovarian cancer [55,57], lung cancer [57]
miR-204 Negative Slug Cholangiocarcinoma [64]

miR-205 Negative ZEB1/2 Breast cancer [56]
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also play an important role in MET transition of cancer
cells.

miRNAs that regulate migration/invasion and metastasis
miR-10b was the first miRNA to be reported to play a
promoting role in cancer metastasis. Ma and colleagues
showed that overexpression of miR-10b in non-
metastatic breast cancer cells induced invasion and dis-
tant metastasis by targeting HOXD10 mRNA, a tran-
scriptional repressor that modulates several genes
including RHOC, a3 integrin, uPAR and MTA-MMP
(MMP14) [83]. In the same study, Twist, a well-known
inducer of EMT, was identified to positively regulate
miR-10b expression [83]. In glioblastoma cells, miR-10b-
HOXD10 regulation axis and its downstream effectors,
RHOC, uPAR and MTA-MMP also mediated invasive-
ness of cancer cells [84]. Another example of invasion/
metastasis-promoting miRNAs is miR-373, which was
initially considered as an oncomiR functioning to target
LATS2, a tumor suppressor gene in testicular germ-cell
tumors [85]. miR-373 and miR-503c stood out in a
screening of metastasis-promoting miRNAs using a
transwell migration assay [86]. These two miRNAs tar-
geted the same downstream gene CD44 to stimulate
MCE-7 cell migration/invasion in vitro and in vivo [86]
(Table 2).

Aside from a few pro-metastatic miRNAs, growing
evidence showed that a greater number of miRNAs act
as suppressors of migration/invasion and metastasis.
miR-31, a pleiotropically acting miRNA, inhibits differ-
ent stages of metastasis including local invasion, anoikis
resistance, extravasation and metastatic colonization.
Three pro-metastatic genes, RHOA, radixin and a5 in-
tegrin were found to be directly targeted by miR-31 in
breast cancer cells [87]. Tavazoie and colleagues showed
that restoring the expression of miR-335, miR-126 or
miR-206 through retroviral transduction significantly

Table 2 miRNAs involved in metastasis-related cell behaviors
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reduced the ability of CN34-LM1 and CN34-BoM1 cells
to metastasize to lung and bone, respectively [99].
Among those miRNAs, the low expression levels of
miR-335 were associated with very poor overall
metastasis-free survival in comparison with patients
whose tumors expressed a high level of this miRNA [99]
(Table 2). It was demonstrated that miR-335 suppressed
migration/invasion through targeting the progenitor cell
transcriptional factor SOX4 and extracellular matrix
component tenascin C (TNC) [99]. In addition, another
well-characterized miRNA that possesses a suppressor
function is miR-138. A number of research groups have
demonstrated that miR-138 is not only involved in
tumorigenesis [100,101] but also regulating metastasis-
related events such as migration and invasion by target-
ing several downstream genes including RhoC, HIFla
and SOX4 in different context of cancer cells [93-95].
Other studies demonstrated that miR-206 induced apop-
tosis and inhibited cell migration through modulating
expression of Notch3, CDK4 and Cyclin D [97,98]. MiR-
126, on the other hand, affects cancer cell migration, ad-
hesion and angiogenesis through modulating proangio-
genic factor VEGFA [88] and an adaptor protein Crk
[89,90] (Table 2).

Two recent studies showed that GIT1 (G protein-
coupled receptor kinase interacting ArfGAP 1), an im-
portant scaffold protein for focal adhesion complexes,
plays an important role in cancer cell migration/invasion
and metastasis [91,92]. GIT1 could be directly targeted
by miR-149 and miR-491-5p in the different context of
cancer cells [91,92]. In breast cancer, Chan and col-
leagues showed that GIT1 was a direct target of miR-
149 and was down-regulated by this miR, leading to in-
stability of a5p1 integrins and paxillin. As a result, miR-
149 suppresses the ability of migration/invasion and lung
metastasis of the highly metastatic breast cancer line,
MDA-MB-231-IV2. Clinical analysis showed that miR-

Role of metastasis regulation Metastasis-relevant Target (s) Cancer types

phenotypes

miR-10b Positive migration, invasion, colonization HOXD10, KLF4 Breast cancer [82,83]

miR-373/503c Positive migration, invasion CD44 Breast cancer [86]

miR-31 Negative migration, invasion RhoA, radixin, a5 integrin  Breast cancer [87]

miR-126 Negative migration, invasion, adhesion, VEGFA, CRK Lung cancer [88,89], gastric cancer [90]
angiogenesis

miR-149 Negative migration, invasion, adhesion GIT1 Breast cancer [91]

miR-491-5p Negative migration, invasion, adhesion GIT1 Oral cancer [92]

miR-138 Negative migration, invasion HIF1A, SOX4, RhoC Ovarian cancer [93], kidney cancer [94],

oral cancer [95]

miR-127 Negative migration BCL6 Breast cancer [96]

miR-206 Negative migration Notch3, CDK4, Cyclin D Melonoma [97], Cervial cancer [98]

miR-335 Negative migration, invasion, colonization SOX4, TNC Breast cancer [99]




Chan and Wang Journal of Biomedical Science (2015) 22:9

149 was decreased while GIT1 level was increased in
lymph node metastases compared to the matched pri-
mary breast tumors [91]. In OSCC (oral squamous cell
carcinoma), Huang et al. showed that miR-491-5p inhib-
ited migration/invasion and metastasis of oral cancer
cells and this was also through targeting GIT1 expres-
sion. Moreover, low level of miR-491-5p and high level
of GIT1 were correlated with lymph node metastasis
and overall survival of OSCC patients [92]. Thus, miR-
149 and miR-491-5p are potent metastasis suppressors
in breast and oral cancer respectively. The finding of dis-
tinct cancer types with different miRs targeting the same
substrate GIT1 to inhibit metastasis implies the import-
ant role of this molecule in cancer cell migration/inva-
sion and metastasis (Table 2).

The let-7 family, first discovered in Caenorhabditis ele-
gans, was found down-regulated in a variety of human
malignancies [102-104]. Recent reports provided a link
between let-7 and cancer metastasis. In a lung cancer
study, let-7 was initially found to reduce oncogenic pro-
teins RAS and HMGA?2 [105,106]. Later, overexpression
of let-7 was shown to suppress mammosphere-forming
ability in vitro and metastatic potential in vivo. Reducing
let-7 levels in breast cancer initiating cells could pro-
mote tumoregencity and metastatic ability in a NOD/
SCID mouse xenograft model [107]. High levels of RAS
and HMGAZ2 were found in breast cancer initiating cells
and were inversely correlated with let-7 expression
[107]. Thus, let-7 plays a central role in breast cancer
stemness and metastasis. In addition, let-7 has been
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shown to be inhibited by miR-107. MiR-107 was shown
to directly interact with mature let-7 to inhibit its func-
tion, leading to promoting tumor progression and me-
tastasis [108] (Table 2).

Besides the miRNA-regulated gene networks during
metastatic processes, the transcriptional control of
metastasis-relevant miRNAs has been recently unrav-
eled. It has been shown that breast cancer metastasis
suppressor 1(BRMS1) plays an important role in the
transcription of several metastasis-relevant miRNAs.
BRMS1 was shown to act as a repressor for metastasis-
promoting miRs such as miR-10b, miR-373 and miR-
520c and an activator for metastasis-suppressing miRs
miR-146a/b, miR-335 and miR-21 [109] (Figure 4).
Moreover, BRMS1 also could decrease Twist, which is
upstream of miR-10b [83]. Several studies have indicated
that miRNAs frequently form feedback loops, since they
could be regulated by transcription factors, which they
directly or indirectly target [110,111]. A good example
of miRNA-regulated feedback loop in cancer metastasis
is NF-xB/miR-146 signaling [112]. Previous studies have
shown that miR-146 induction depends on NF-xB acti-
vation [113]. A subsequent investigation demonstrated
that miR-146a/b suppressed breast cancer metastasis via
reducing the activity of NF-xB by directly targeting
IRAK1 and TRAF6, both of which are known to positively
regulate NF-xB activity [114]. Those findings suggest that
NF-kB and miR-146 form a negative regulatory loop. Re-
cently, Rokavec and coworkers uncovered a feedback loop
formed by IL-6/STAT3-mediated represssion of miR-34a
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and upregulation of IL-6R (IL-6 receptor), which pro-
motes EMT-mediated colorectal cancer invasion and me-
tastasis [115] (see Figure 3). As described above, miR-200/
ZEB and miR-34a/Snail were found to form a reciprocal
suppression loop where miRNA targets could repress
miRNAs themselves [59,67] (see Figures 2 and 3). Further
complicating the transcriptional regulatory circuit of miR-
NAs, there are evidences showing that there exists a
coherent“feed-forward’loop (FFP) in the Snail-miR-34a-
ZNF281 regulation axis where Snail could both regulate
miR-34a and ZNF281 expression but in a negative and
positive manner respectively [116] (see Figure 3). In this
feed-forward loop, Snail was found to suppress miR-34a
while promoting ZNF281 expression, leading to the induc-
tion of EMT.

Aside from the transcriptional control, altered expres-
sions of miRNAs could be a result of epigenetic changes.
An extensive analysis of genomic sequences of miRNA
genes has revealed that approximately half of them are
associated with CpG islands [117]. Indeed, many studies
have indicated that methylation status could be respon-
sible for the deregulated expression of miRNAs in can-
cers. Saito and colleagues showed that silencing of miR-
127 in several cancers was due to promoter hypermethy-
lation [118] and treatment of a bladder cancer cell line
with  DNMT inhibitor 5-Aza-2’-deoxycytidine could
strongly up-regulate the miR-127 level and down-
regulate BCL-6 expression, which was shown to be dir-
ectly targeted miR-127 [118]. It has been also shown that
miR-9-1 and miR-34a/b are hypermethylated in breast
and colon cancer respectively [119,120], In addition, his-
tone acetylation was also reported to play a role in regu-
lating miRNA expressions. Several reports have shown
that HDAC inhibitors altered miRNA expression in hu-
man cancer cell lines including breast [121] and colon
cancers [122,123].

miRNAs as diagnostic and prognostic biomarkers for
cancer growth and metastasis.

Cancer patients who are diagnosed at an early stage usu-
ally have a better prognosis and overall survival rate
[124]. In this regard, the need to develop effective early
biomarkers as well as those for predicting treatment out-
come cannot be overemphasized.

Given that miRNAs are relatively stable due to their
small size, it raises the possibility that analysis of miRNA
expression may be a useful tool to define cancer states.
As described earlier, miRNA expression has been found
deregulated in a variety of human malignancies [15,16].
Lu et al. was the first to demonstrate that the expression
pattern of miRNAs could further classify cancer types
[15]. Moreover, miRNA profiles not only could be used
to distinguish normal from cancerous tissues, but could
also distinguish different subtypes of breast cancer.
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Blenkiron et al. have shown that high level of miR-200
family correlates with the luminal type whereas miR-205
and miR-145 are greatly reduced in the basal-like triple
negative breast cancer (ER7/PR7/HER™) [125]. Several
groups have reported miRNA expression signature in
predicting cancer outcome. The first evidence came
from the study of Calin et al. who reported the unique
miRNA signature associated with progression and prog-
nosis of chronic lymphocytic leukemia (CLL) [22]. In
lung cancer, downregulation of miR-155 and let-7a-2
was reported to predict poor prognosis [126]. Recently,
more and more miRNAs as prognostic biomarkers have
been reported in various cancer types. A 7-miRNA clas-
sifiers can be used to predict patients’ overall and
relapse-free survival in gastric cancer [38]. Similarly, a
microRNA signature was reported to be able to predict
survival and relapse in lung cancer patients [127]. Low
miR-191 and high miR-193a levels were shown to be as-
sociated with shorter survival in melanoma patients [36].
The miR-21, a well-studied oncomiR, also has been
shown to serve as an indicator of poor prognosis in vari-
ous cancer types, including breast [128,129], liver [130],
lung [131], and colorectal cancer [132]. A hypoxia-
induced miRNA, was identified as a prognostic marker for
breast cancer patients. High miR-210 expression was
shown to have an inverse correlation with disease-free and
overall survival for breast cancer patients [133]. Several
studies reported that certain miRNAs could be used as
biomarkers to predict cancer metastasis. Primary tumors
with low levels of miR-335 and miR-126 have a higher
probability of developing metastasis at secondary sites in
breast cancer patients [99]. In OSCC, tumors with low
levels of miR-491-5p have a higher tendency to form
lymph node metastasis [92]. Similarly, miR-149, a potent
metastasis suppressor, was found to be down-regulated in
metastatic tumors of breast cancer patients [91].

Recently, a growing body of evidence has indicated
that circulating miRNAs could serve as biomarkers for
cancer prognosis [134-136]. Indeed, circulating miRNAs
have been extracted and detected from a variety of sam-
ples including blood (plasma or serum) [43,134], urine
[137], saliva [138,139] and sputum [140,141] . They have
great potentials to serve as novel biomarkers for early
diagnosis and prognosis of cancer. For example, serum
levels of miR-92a and miR-29a are significantly increased
in patients with colorectal cancer [142]. The levels of
miR-141 in the serum can distinguish healthy people
from prostate cancer patients [134]. Those studies open
up new strategies for cancer detection and follow-up dis-
ease management.

Besides the value of miRNAs as biomarkers for pre-
dicting survival and disease progression, recent studies
have revealed another great potential of miRNAs as pa-
rameters for predicting the responses of cancer patients
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to specific therapies. For instance HCC (hepatocarci-
noma) patient with a low miR-26 level responded well to
interferon-a treatment resulting in improved survival
[143]. On the other hand, increased miR-21 could pre-
dict poor response to adjuvant chemotherapy in colorec-
tal [132,144] and lung cancer patients [39].

Therefore, different expression levels of certain miR-
NAs could be used to discriminate patients who could
benefit most from particular therapies.

miRNAs as therapeutic targets and tools

Gain- and loss-of-function studies of miRNAs have pro-
vided insights towards the possible use of miRNAs in
therapeutic interventions. The fact that a single miRNA
has multiple target genes requires careful considerations
when using miRNAs as therapeutics. The positive aspect
is its capability to targeting multiple related pathways. The
downside is the off targeting and concern of specificity.

There are at least two possible approaches to manipulate
miRNA expression in cancer cells. Notably, 1) miRNA-
based therapy: Introduction of antisense miRNAs (Anti-
miRs) to block the function of oncogenic miRNAs/metas-
tasis-promoting miRNAs or re-introduction of synthetic
miRNAs (miR mimics) to mimic tumor suppressor or me-
tastasis suppressor miRNAs that are reduced or lost in
cancer cells. 2) Induction of miRNAs expression: This
strategy involves the use of drug to control miRNA ex-
pression by modulating its transcription or processing.

Stability and effective delivery to target sites remain the
major challenge for miRNA-based therapy and their
optimization is the key for the success of this kind of ap-
proach. Given that therapeutic miRNAs would be system-
ically delivered into the blood stream, some modifications
need to be made to prevent them from being filtered by
kidney (molecules less than 52 kDa would be filtered and
excreted in urine. An estimated size of unmodified
dsRNAs is 7~20 kDa) and they are removed or
damaged by nucleases and phagocytic immune cells
such as macrophages [14]. Several chemical modifica-
tions have been used in vivo to date. Two major chem-
ical modifications, 2’-O-methyl-group (OMe)-modified
oligonucleotides [145,146] and locked nucleic acid (LNA)-
modified oligonucleotides [147,148], have been widely
applied to enhance stability of oligonucleotides. More com-
prehensive types of modification have been previously
reviewed [1,149]. In addition, a modification of oligonucle-
otides at 3’ end using cholesterols has been demonstrated
to greatly improve their cellular uptake [150,151].

Calin et al. provided the first indication of the feasibility
of miRNA-based cancer therapeutics. Re-introduction of
miR-15a/16-1 caused apoptosis in leukemic MEGO1
cells and suppressed tumor growth in a xenograft model
[152]. In breast cancer, Ma et al. demonstrated the po-
tential therapeutic application of silencing a metastasis-
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promoting miR, miR-10b, in a mouse model. They re-
ported that systemic treatment of tumor-bearing mice
with miR-10b antagomir, a 2’-O-methyl-group (OMe)-
modified, cholesterol-conjugated antisense miR could
suppress breast cancer metastasis [153]. Tazawa and
colleagues reported that systemic delivery of miR-34a
mixed with atelocollagen inhibited human colon cancer
progression [154]. Another group developed a LPH
(liposome-polycation-hyaluronic acid) nanoparticle formu-
lation modified with tumor-targeting single chain antibody
fragment (scEv) for systemic delivery of miR-34a in a mur-
ine B6F10 lung metastasis model and showed reduced
tumor load in the lung [155]. To date, miR-34a mimics
MRX34 is the first miRNA mimicry to be advanced
to human clinical trial (http://clinicaltrials.gov/ct2/show/
NCT01829971). Moreover, researchers have demon-
strated another possible use of miRNAs as adjuvant agents
[156,157]. Overexpression of miR-205 in SKBR3 breast
cancer cells could increase their responsiveness to tyrosine
kinase inhibitors Gefitinib and Laptatinib by suppressing
HERS3 [158]. Another way to increase the endogenous ex-
pression of miRNA of interest is by the use of adenoasso-
ciated viruses (AAV). One major advantage of using AAV
as a viral vector for delivery is its availability of a number
of different AAV serotypes, which allow for the potential
tissue-specificity due to the property of each serotype
[159]. Kota et al. reported that AAV-mediated delivery of
miR-26a alleviated tumorigenesis in a mouse liver cancer
model [160].

Taken together, those reports suggest that manipulat-
ing miRNA expression could be an approach for cancer
treatment and miRNA-based therapeutics in combin-
ation with other cancer drugs could also be considered
for improved new regimens.

Conclusion

With over 10 years of extensive studies of miRNAs includ-
ing expression profiling, action mechanism, functional
characterization and clinical implication, cancer biologists
have unraveled the fundamental role of miRNAs in cancer
progression and metastasis. In the next decade, the chal-
lenge of miRNAs research would probably be how the
bench discoveries so far could be translated into clinical
application. In this respect, designs and modifications to
increase stability of miRNA mimics and anti-miRs should
be optimized, and methods to improve the efficiency and
specificity of in vivo delivery to target organs and types of
cells need to be developed. Despite the potential complica-
tion of miRNA-based therapies, in which a miRNA may
have unexpected off targets that lead to an unpredicted re-
sult, the current discoveries of miRNAs and anti-miRs as
a new class of drug targets are encouraging and provide a
promising therapeutic strategy for interventions of cancer
progression and metastasis.
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