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Abstract

Background: Mesenchymal stem cells (MSCs) at maternal-fetal interface are considered to play an important role in
the pathogenesis of pre-eclampsia (PE). microRNAs (miRNAs) also have an important influence on differentiation,
maturation, and functions of MSCs. Our aim in this study was to determine the differential expression of miRNAs in
decidua-derived MSCs (dMSCs) from severe PE and normal pregnancies.

Results: miRNA expression profiles in dMSCs from five patients with severe PE and five healthy pregnant women
were screened using microarray. Then, bioinformatic analysis of the microarray results was performed. Out of 179
differentially expressed miRNAs, 49 miRNAs had significant (p < 0.05) differential expression of ≥ 2.0-fold changes,
including 21 up-regulated and 28 down-regulated. miRNA-Gene-network and miRNA-Gene ontology (GO) -network
analyses were performed. Overall, 21 up-regulated and 15 down-regulated miRNAs showed high degrees in these
analyses. Moreover, the significantly enriched signaling pathways and GOs were identified. The analyses revealed
that pathways associated with cell proliferation, angiogenesis, and immune functions were highly regulated by the
differentially expressed miRNAs, including Wnt signaling pathway, mitogen-activated protein kinase signaling
pathway, transforming growth factor beta signaling pathway, T-cell receptor signaling pathway, and B cell receptor
signaling pathway. Four miRNA predicted target genes, vascular endothelial growth factor A (VEGFA), indoleamine
2,3-dioxygenase, suppression of cytokine signaling 3, and serine/threonine protein phosphatase 2A 55 kDa
regulatory subunit B α isoform (PPP2R2A) were all decreased in dMSCs from patients with PE. Furthermore,
the physiological roles of miR-16 and miR-136 in the down-regulation of VEGFA and PPP2R2A, respectively,
were confirmed through reporter assays.

Conclusions: These findings suggest that miRNAs in dMSCs may be important regulatory molecules in the
development of PE.
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Background
Pre-eclampsia (PE) affects approximately 5% of pregnan-
cies and remains a leading cause of maternal and neo-
natal mortality and morbidity in the world [1]. While
much research has been devoted toward this topic, the
cause of PE still remains elusive [2]. Previous studies
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indicate that the imbalanced immune system in the
maternal–fetal interface may be one cause of PE [1,3,4].
Maternal immune maladaptation toward the feto-placental
district is a cause for the development of defective tropho-
blast and related maternal-placental pathological anomal-
ies, such as PE [5,6]. Moreover, studies have shown that
PE results in a shift in angiogenesis and anti-angiogenic
factors toward a maladaptive placental circulation [7,8]. It
indicates that abnormality in placental vascular remodel-
ing is also a likely pathogenesis of PE [9,10].
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Mesenchymal stem cells (MSCs) are multi-potent pro-
genitor cells, which can differentiate into various cell types,
such as osteoblasts, adipocytes and chondroblasts, and are
easily expanded and stored ex vivo [11,12]. MSCs are the
focus of intensive efforts worldwide directed not only at
elucidating their nature and unique properties but also in
developing cell-based therapies for a diverse range of dis-
eases [13]. They are considered to be immune-privileged
and shown to exert a strong inhibitory effect on other im-
mune cells [14-17]. Over 300 clinical trials related to tissue
repair and immune conditions have been conducted in
treatment with MSCs because of its immunosuppressive
properties [18-20]. Moreover, MSCs are promising tools for
treating diseases such as myocardial infarction and stroke
due to their ability to promote endogenous angiogenesis
and neurogenesis through a variety of secreted factors [21].
The maternal-fetal interface is an important source of

MSCs [22-24]. Aberrant levels of cytokines were observed
in placenta-derived MSCs from patients with PE, and
higher levels of MSC negative markers were found in the
placentas from patients with PE [25,26]. These findings
suggest that MSCs may contribute to pathogenesis of PE.
Therefore, investigation of the immune-modulatory, pro-
angiogenic, and anti-inflammatory properties of decidua-
derived MSCs (dMSCs) may open new perspectives into
the understanding of PE [5].
MicroRNAs (miRNAs) are small noncoding RNAs that

control gene expression by binding to target messenger
RNAs (mRNAs) and thereby inducing translational re-
pression or degradation of mRNAs [27]. miRNAs contrib-
ute to embryonic development and tissue homeostasis but
even more profoundly regulate pathophysiological processes
[28,29]. miRNAs also have an important influence on differ-
entiation, maturation, and functions of stem cells [30,31].
Moreover, it was reported that differential expression of miR-
NAs has been observed in placentas from patients with PE
[32,33]. Therefore, it was hypothesized that miRNAs may be
involved in the pathogenesis of PE by regulating dMSCs.
In this study, for a better understanding of the pathogen-

esis of the PE, the miRNA expression profiles of dMSCs
from patients with PE and healthy pregnant women were
analyzed using microarray. Bioinformatic analysis of the
microarray results was performed. The results showed that
the differences in miRNAs and their regulated signaling
pathways exist in dMSCs from healthy pregnant women
and patients with PE. The expression of target genes of dif-
ferentially expressed miRNAs in dMSCs from patients with
PE was also detected. These findings have important impli-
cations for revealing the pathogenesis of PE.

Methods
Patients and tissue samples
Human decidua tissues from patients with PE and age-
matched normotensive controls were collected in the
Department of Gynecology and Obstetrics of the Affiliated
Drum Tower Hospital of Nanjing University Medical
School (Nanjing, China). The hospital’s ethics committee
approved the consent forms and the protocol for evaluat-
ing the tissue. Written consent form was received from
each patient prior to surgery. PE was defined as the pres-
ence of hypertension and proteinuria beyond the 20th
week of pregnancy. Elevation in blood pressure with sys-
tolic blood pressure > 140 mm Hg or diastolic pressure >
90 mm Hg was considered hypertensive. All deciduas
were obtained at the time of cesarean section. Twenty
pregnant women who had complications of severe late-
onset PE with delivery occurring after 34 weeks and 20
women with normal term pregnancies as the control
group were recruited. The relevant clinical characteristics
of the patients are presented in Table 1. Any complica-
tions of pregnancy such as multiple pregnancies including
twins, fetal structural or genetic anomalies, presence of
maternal chronic hypertension, hemolysis, elevated liver
enzyme levels, the HELLP syndrome, cardiovascular dis-
ease, renal disease, hepatic disease, diabetes, or other in-
fectious disease were criteria for exclusion.

Isolation and culture of MSCs from deciduas
The decidua tissues were cut into 1–2 mm3 fragments and
incubated in an enzyme cocktail (5 U/mL hyaluronidase,
125 U/mL collagenase and 50 U/mL dispase; Sigma, St
Louis, MO) for 90–120 min with gentle agitation at 37°C.
This tissue was then crushed with forceps to release indi-
vidual cells, and large pieces of tissue were removed. The
cells were pelleted by centrifugation at 250 g for 5 min, re-
suspended in fresh medium containing Dulbecco’s modi-
fied Eagle’s medium (DMEM) / F12 (Gibco, Grand Island,
NY) and 20% fetal bovine serum and transferred to six
well plates. Cells were incubated at 37°C in an incubator
with 5% CO2 at saturating humidity. When cells reached
70–80% confluence or when numerous colonies were
observed, the cells were detached using 0.25% trypsin/
ethylenediaminetetraacetic acid (Invitrogen, Carlsbad, CA,
USA), and the trypsin was inactivated using DMEM/F12.
The culture medium was replaced every 3 or 4 days.

Flow cytometry
After passages 2–4, the specific surface antigens of dMSCs
in the cultures were detected by flow cytometry analysis.
The following mouse anti-human antibodies, purified or
directly conjugated with fluorescein isothiocyanate, phyco-
erythrin, or allophycocyanin, were used in the flow cytome-
try analysis: anti-CD105, anti-CD73, anti-CD90, anti-CD29,
anti-CD44, anti-CD106, anti-HLADR, anti-CD19, anti-
CD11b, anti-CD14, anti-CD34, anti-CD31, anti-CD45 and
immunoglobulin (Ig) G/IgM isotype controls (all from BD
Biosciences, San Jose, CA). For fluorescence measure-
ments only, data from 10,000 single cell events were



Table 1 Clinical characteristics of study population

PE (N = 20) Control (N = 20) p-Value

Age, years 29.2 ± 1.4 28.9 ± 1.2 NS

Gestational age at delivery, weeks 37.3 ± 0.3 38.8 ± 0.5 NS

% of primiparae 11 (55%) 14 (70%) NS

Body mass index, kg/m2 28.3 ± 0.9 27.9 ± 1.1 NS

Systolic blood pressure, mm Hg 160.4 ± 4.7 118.3 ± 3.4 <0.05

Diastolic Blood pressure, mm Hg 110.4 ± 4.1 82.5 ± 3.8 <0.05

Proteinuria, mg/24 h 2108 ± 30.4 0 <0.05

Alanine aminotransferase, U/L 35.3 ± 2.3 31.8 ± 3.1 NS

Blood urea nitrogen, mmol/L 3.9 ± 0.4 3.7 ± 0.6 NS

Platelet, ×109/L 160.4 ± 32.1 194.3 ± 30.8 NS

Birth weight, g 2901 ± 183 3278 ± 203 NS

Placenta weight, g 476 ± 45 513 ± 52 NS

PE, pre-eclampsia; NS, non-significant.
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collected using a standard FACScalibur™ flow cyt-
ometer (Immunocytometry Systems/Becton Dickinson,
San Jose, CA). Data were analyzed using CELLQuest™
(Becton Dickinson).

miRNA microarray analysis, miRNA-Gene-network and
miRNA-Gene-ontology (GO) network analysis
Ten samples of dMSCs, five from women with normal
pregnancies (control group, N1-N5) and five from patients
with PE (P1-P5) were assayed using human miRNA
microarray kit version 16.0 (Agilent Technologies, Santa
Clara, CA) purchased from CapitalBio Corporation
(Beijing, China). Total RNA, including miRNAs, was ex-
tracted using Trizol reagent (Invitrogen) according to the
manufacturer’s instructions. The concentration of RNA
was measured using a SmartSpec™ Plus spectrophotom-
eter (Bio-Rad, Hercules, CA), and the purity of RNA was
checked by Agilent 2100 Bioanalyzer (the value of A260/
A280 was between 1.9 and 2.0), and the quality of RNA
was confirmed by agarose gel electrophoresis. For each
miRNA, multiple probes were spotted on the array, and
the mean intensity of these probes was calculated to rep-
resent the expression value of the miRNAs. In addition,
multiple spots were included as negative controls. For
each sample, 100 ng total RNA was hybridized with the
miRNA array and further processed in accordance with
the manufacturer’s instructions. Only those miRNAs with
significant (p < 0.05) differential expression of ≥ 2.0-fold
changes were reported. The scanned images were proc-
essed using the Sanger Center miRBase version 16.0. The
miRNA-Gene-network was constructed based on the inter-
actions of miRNAs and genes in Sanger miRNA database.
The miRNA gene ontology (GO) network was constructed
based on the relationships of significant GO categories
and genes/miRNAs.
Quantitative reverse transcription-polymerase chain
reaction analysis
Total RNA was purified using miRNA isolation kit (Ambion,
Austin, TX) to enrich the small RNA fraction. The expres-
sion of miRNAs was determined by SYBR Green assays
(Bio-Rad, Hercules, CA). SYBR Green qPCR SuperMix-
UDG was purchased from Invitrogen. Quantitative poly-
merase chain reaction (qPCR) was performed using an
Applied Bio- Systems 7500 Fast system. All experiments
were performed in triplicate. The level of miRNA expres-
sion was calculated based on the PCR cycle number (Ct),
and the relative gene expression level was determined using
the ΔΔCt method. All primers used are listed in Table 2.

Luciferase assays
Cells were plated in 24-well plates at a density of 1.5 × 104

cells per well and each well received 250 ng pGL3-
luciferase reporter and 5 ng Renilla luciferase reporter.
The cells were harvested using Promega’s Passive Lysis
buffer after the indicated treatment. Luciferase and Renilla
luciferase activities were determined using Promega’s Dual
Luciferase assay in a Plate Chameleon luminometer
(BioScan, Washington DC). Firefly luciferase was normal-
ized by Renilla luciferase to correct for transfection effi-
ciency. Fold induction was determined by dividing the
averaged normalized values from each treatment by the
control value for each transfection condition within that
experiment. Values were averaged from multiple experi-
ments as indicated in the figure legends.

Data analysis
The acquired array images were analyzed with Agilent
Feature Extraction software (version 10.7.3.1). Quality
normalization and subsequent data processing were per-
formed with the Agilent GeneSpring GX software package



Table 2 Primer information

miRNA name Forward primer(5′-3′) Reverse primer (5′-3′)

miR-136-FP ACACTCCAGCTGGGACTCCATTTGTTTTG CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCCATCAT

miR-495-RP ACACTCCAGCTGGGAAACAAACATGGTG CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAGAAGTG

miR-494-RP ACACTCCAGCTGGGTGAAACATACACGG CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAGGTTTC

miR-16-RP ACACTCCAGCTGGGTAGCAGCACGTAAA CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCGCCAATA

miR-29b-RP ACACTCCAGCTGGGTAGCACCATTTTGAAA CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACACTGA

miR-140-RP ACACTCCAGCTGGGCAGTGGTTTTACCC CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCATA

miR-30a-RP ACACTCCAGCTGGGTGTAAACATCCTCG CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTTCCAGT

miR-100-RP ACACTCCAGCTGGGAACCCGTAGATCCG CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACAAGTT

miR-221-RP ACACTCCAGCTGGGAGCTACATTGTCTGC CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAAACCA

miR-1207-RP ACACTCCAGCTGGGTGGCAGGGAGGCT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCCCTCCC

U6snRNA CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

URP TGGTGTCGTGGAGTCG

SOCS3 CCTGCGCCTCAAGACCTTC GTCACTGCGCTCCAGTAGAA

PPP2R2A CATACCAGGTGCATGAATACCTC GGGTTATGTCTCGCTTTGTGTTT

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
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(v11.5.1). Differentially expressed miRNAs were identified
through Fold Change filtering and hierarchically clustered
by the Agilent GeneSpring GX software (version 11.5.1).
Statistical analysis was performed using unpaired Student’s
t-test, using Graphpad Prism 5 Demo software (GraphPad
software, San Diego, CA). A p < 0.05 was considered to be
statistically significant.

Results
Identification of dMSCs derived from patients with PE and
healthy donors
The decidua tissues were collected from patients with PE
and age-matched normotensive controls. Then the dMSCs
were isolated and cultured as described in Methods. After
two cell passages, the cells formed a monolayer of homoge-
neous bipolar spindle-like cells with a whirlpool-like array
(Figure 1A and B). Furthermore, after three cell passages,
the adherent cells were symmetric with phenotypic surface
antigens. The dMSCs shared most of their phenotypes with
bone marrow-derived MSCs as reported previously [34-36],
including positivity for CD29, CD44, CD90, CD105 (SH2)
and CD73 (SH3), and negativity for CD19, CD11b, CD14,
CD34, CD106, CD45 and CD31 (endothelial cell marker),
and HLA-DR (Figure 1C and D). The results showed that
dMSCs from patients with PE and healthy controls main-
tained similar cell morphology and phenotype (Figure 1).

miRNA expression profiles and validation of microarray
data by qPCR
Using the Agilent human miRNA microarray kit version
16.0, consisting of 940 miRNA probes, corresponding to
the Sanger Center miRBase version 16.0, miRNA expres-
sion profiling was performed in the dMSCs derived from
the healthy women with normal pregnancies (N1-N5)
and women with PE (P1-P5). The comparison between
these populations is expected to reveal some underlying
differences regarding the activation of gene expression
programs related to maintenance, proliferation and func-
tion of stem cells, providing important insights into the
pathophysiology of PE.
To obtain an overview of the similarities and differ-

ences in their miRNA expression profiles, we performed
an unsupervised clustering analysis of our expression
datasets after normalizing miRNA Ct values across sam-
ples with the quantile method and filtering out miRNAs
with low variation across all samples. The hierarchical
cluster of the genes with > 2-fold changes between healthy
women with normal pregnancies and patients with PE is
shown in Figure 2A. The biological replicates of each cell
type were read together, demonstrating the robustness
of this dataset. Remarkably, the miRNA expression profile
of dMCSs from patients with PE is different from that of
healthy women with normal pregnancies.
As shown in Figure 2B, compared with healthy women

with normal pregnancies, miR-136, miR-494, miR-16,
miR-100, miR-29b, miR-140-3p, miR-376a, miR-301a,
miR-4324, miR-324-5p, miR-99a, miR-30a and miR-140-
5p were significantly increased, while miR-148a, miR-4270,
miR-1225-5p, miR-1207, miR-638, miR-1202, miR-2861,
miR-483-5p, miR-575, miR-4327, miR-4298 and miR-
3679-5p were decreased in dMSCs from patients with
PE. Further validation of aberrant miRNAs was deter-
mined using qPCR analysis in dMSCs from 20 patients
with PE and 20 healthy women with normal pregnancies.
The nine most up-regulated miRNAs (miR-136, miR-495,
miR-16, miR-29b, miR-140-5p, miR-30a, miR-100, miR-494,



Figure 1 Identification of dMSCs derived from patients with PE and healthy donors. A: Morphology of dMSCs from healthy pregnant
women within 1 week of culture; B: Morphology of dMSCs from patients with PE within 1 week of culture; C: Flow cytometric characterization of
dMSCs isolated from healthy pregnant woman during passage 3. Expression of surface antigens CD105, CD73, CD90, CD29, CD44, HLA-DR, CD19,
CD11b, CD106, CD45, CD14, CD34, and CD31 was detected using flow cytometry. The percentage of each positive marker is shown. The percentages
are shown as mean ± SE from five healthy pregnant women; D: Flow cytometric characterization of dMSCs isolated from patient with PE during
passage 3. Expression of surface antigens CD105, CD73, CD90, CD29, CD44, HLA-DR, CD19, CD11b, CD106, CD45, CD14, CD34, and CD31
was detected using flow cytometry. The percentages are shown as mean ± SE from five patients with PE. dMSC, decidua-derived mesenchymal stem
cell; PE, pre-eclampsia; SE, standard error.
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and miR-221) and one down-regulated miRNA (miR-
1207-5p) were identified. As shown in Figure 2C, miR-
136, miR-495, miR-16, miR-29b, miR-140-5p, miR-30a,
miR-100, miR-494 and miR-221 were increased and miR-
1207-5p was decreased in dMSCs from patients with PE.
The results were consistent with the microarray analysis.
Furthermore, the patients with PE were divided into more

severe PE (proteinuria, >2108 mg/24 h, systolic blood pres-
sure, >160.4 mmHg; diastolic blood pressure, >110.4 mmHg)
and less severe PE (proteinuria, <2108 mg/24 h, sys-
tolic blood pressure, <160.4 mmHg; diastolic blood pres-
sure, <110.4 mmHg). Then the expression of miR-136,
miR-495, miR-16, miR-29b and miR-494 was detected in
these two groups using qPCR. As shown in Figure 2D,
miR-136, miR-495, miR-16, miR-29b and miR-494 were
expressed more in patients with more severe PE than
those in patients with less severe PE. Moreover, the rela-
tionship between differentially expressed miRNAs and
pathogenesis of PE was analyzed. As listed in Additional
file 1: Table S1, miR-16, miR-30a, miR-29b, miR-100, miR-
214, miR-148a, and miR-483-5p involved the regulation of
angiogenesis; miR-494, miR-140-5p, miR-16, miR-301a,
miR-30a, miR-221, and miR-132 played an important role
in the regulation of inflammation signaling and function
of immune cells; miR-140-3p, miR-140-5p, miR-29b, miR-
16, and miR-31regulated the differentiation of dMSCs.

Differentially expressed miRNA-Gene-network and
miRNA-GO-network analysis
To explore the relationship between miRNAs and proper-
ties of genes, the miRNA network was constructed based
on the relationship between significant GOs, genes, and
miRNAs. The miRNA-Gene-network was constructed
based on the interactions of miRNAs and genes in the
Sanger miRNA database. The miRNA-GO-network was
constructed based on the relationships between signifi-
cant GO categories and genes/miRNAs. In these networks,
the degree represents the contribution of an individual



Figure 2 miRNA expression profiles and validation of microarray data by qRT-PCR analysis. A: Hierarchical cluster analysis of differentially
expressed miRNAs in placenta from patients with PE. miRNAs in decidua from women with PE (P1, P2, P3, P4 and P5) and healthy pregnant
women (N1, N2, N3, N4 and N5). Each row represents a miRNA and each column represents a sample pair of decidua patients with PE and
healthy women with normal pregnancies. The color legend indicates high expression (yellow), low expression (blue) or no change in expression
(Black). The grey segments represent the amount of miRNA expression is very low or no hybridization signal is detected. The miRNA data were
clustered based on their similarities in expression among these cohorts; B: Differentially expressed miRNAs in patients with PE (n = 5) and healthy
pregnant women (n = 5). Average log2 expression ratio of all differentially expressed miRNAs (p < 0.01). Blue dots represent the miRNAs with
significant (p < 0.05) differential expression of ≥ 2.0-fold changes. Black dots represent the miRNAs with differential expression of >1.0-fold
and <2.0-fold changes (p > 0.05); C: qPCR was used to analyze the expression of miR-136, miR-495, miR-16, miR-29b, miR-140-5p, miR-30a,
miR-100, miR-494, miR-221, and miR-1207-5p in dMSCs from patients with PE. D: qPCR was used to analyze the expression of miR-136, miR-495, miR-16,
miR-29b, and miR-494 in dMSCs from patients with more severe PE (proteinuria, >2108 mg/24 h, systolic blood pressure, >160.4 mmHg; diastolic blood
pressure, >110.4 mmHg) and less severe PE (proteinuria, <2108 mg/24 h, systolic blood pressure, <160.4 mmHg; diastolic blood pressure, <110.4 mmHg).
Data indicate relative expression following normalization. Values are means ± SE (*p < 0.05; ***p < 0.01). dMSC, decidua-derived mesenchymal stem cell;
miRNA, microRNA; PE, pre-eclampsia; qPCR, quantitative polymerase chain reaction.
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miRNA or GO category to adjacent miRNAs or GO
categories.
It was reported previously [37] that miR-16 showed the

highest number of connections in the up-regulated miR-
NAs. Other miRNAs also showed higher degrees, including
miR-30a, miR-29b, miR-301a, miR-495, miR-494, miR-
221, miR-377, and miR-10b. In decreased miRNA-Gene-
network and miRNA-GO-network (Figure 3A and 3B), it
was found that miR-1207-5p showed the highest contribu-
tion to adjacent miRNAs or GO categories in the down-
regulated miRNAs (Figure 3C). As shown by Additional
file 1: Tables S2 and S3, miR-1207-5p regulated 30 genes
and 34 GOs. Other miRNAs including miR-199b-5p
(24 genes and 28 GOs), miR-940 (23 genes and 21
GOs), miR-148a (21 genes and 21 GOs) and miR-214
(20 genes and 28 GOs) also showed a higher number
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of connections with adjacent miRNAs or GO categor-
ies (Figure 3C, Additional file 1: Tables S2 and S3).

Analysis of the signaling pathways regulated by
differentially expressed miRNAs
Furthermore, the significantly enriched signaling path-
ways, which regulated by the differentially expressed
miRNAs, were identified. The top 15 enriched signaling
pathways for up-regulated and down-regulated expression
of miRNAs were shown in Additional file 1: Figure S1A
and S1B, respectively. It revealed that the pathways associ-
ated with cell proliferation, angiogenesis, and immune
Figure 3 Differentially expressed miRNA-Gene-network and miRNA-G
based on the interactions of down-regulated miRNAs and genes in Sanger
on the relationships of significant GO categories and down-regulated miRN
networks, the term “degree” represents the contribution of an individual m
ontology; miRNA, microRNA.
functions were highly regulated by differentially expressed
miRNAs, including Wnt signaling pathway, mitogen-
activated protein kinase (MAPK) signaling pathway,
transforming growth factor (TGF) beta signaling pathway,
T cell receptor signaling pathway, and B cell receptor sig-
naling pathway, etc. (Additional file 1: Figure S1A
and S1B). Moreover, the significantly enriched GOs
regulated by differentially expressed miRNAs were an-
alyzed. The degree represents the number of miRNAs
that regulate the same GO. As shown in Table 3, angio-
genesis, response to hypoxia, apoptosis, TGF beta receptor
signaling pathway, cell migration, and immune response
O-network analysis. A: The miRNA-Gene-network was constructed
miRNA database; B: The miRNA-GO-network was constructed based
As; C: The network degree of low-level expressed miRNAs. In these
iRNA or GO category to adjacent genes or GO categories. GO, gene
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were significantly regulated by up-regulated miRNAs in
patients with PE. In these GOs, angiogenesis and response
to hypoxia were regulated by 15 miRNAs and 14 miRNAs,
respectively. Moreover, cell differentiation, cell cycle,
apoptosis, aging, and response to lipopolysaccharide were
mainly regulated by down-regulated miRNAs in patients
with PE (Table 3).
Detection of VEGFA, IDO, SOCS3 and PPP2R2A expression
in dMSCs
Vascular endothelial growth factor A (VEGFA) is a key
angiogenesis factor. Indoleamine 2,3-dioxygenase (IDO)
and suppression of cytokine signaling 3 (SOCS3) play an
important role in immunoloregulation of MSC. Serine/
threonine protein phosphatase 2A 55 kDa regulatory sub-
unit B α isoform (PPP2R2A) negatively regulates extracel-
lular signal-regulated kinase (ERK) pathway [38,39], which
is involved in differentiation of MSCs [40,41].
Interestingly, VEGFA was predicted to be a putative tar-

get of miR-16 and miR-29b by the miRNA-Gene-network
analysis and other target prediction programs [miRanda
(http://diana.cslab.ece.ntua.gr/microT/), TargetScan (http://
www.targetscan.org/) and PicTar (http://pictar.mdc-berlin.
de/) algorithms). With same methods, it was predicted that
IDO was a target of miR-494 and SOCS3 was a target
of miR-495. In addition, it was reported that PPP2R2A
is the target gene of miR-136 [38]. To test whether these
changes in miRNA expression were accompanied by
changes in corresponding genes, the expression levels
of VEGFA, IDO, SOCS3, and PPP2R2A in dMSCs
were determined. As shown in Figure 4A-4D, VEGFA,
IDO, SOCS3 and PPP2R2A were all decreased in dMSCs
from patients with PE compared with healthy pregnant
women.
Table 3 Target gene signaling pathways analysis

go_name Degree

Increased miRNAs in patients with PE

Angiogenesis 15

Response to hypoxia 14

Apoptosis 13

Transforming growth factor beta receptor signaling pathway 12

Cell migration 11

Immune response 11

Decreased miRNAs in patients with PE

Cell differentiation 9

Cell cycle 8

Apoptosis 7

Aging 6

Response to lipopolysaccharide 6

Degree represents the number of miRNAs related to a GO.
miR-16 targets VEGFA and miR-136 targets PPP2R2A in
dMSCs
miR-16 showed the highest number of connections in
the differentially expressed miRNAs. More importantly,
miR-16 was predicted to target VEGFA, which is an im-
portant candidate for the pathogenesis of PE. In addition,
miR-136 was found to be highly up-regulated in the valid-
ation experiment. Therefore, miR-16 and miR-136 were
chosen to validate the predicted target gene in dMSCs.
The expression of a luciferase reporter gene fused to 3′
untranslated region (UTR) of VEGFA after transfection
with miR-16 mimic and its inhibitor into dMSCs was de-
tected. The results showed that miR-16 significantly sup-
pressed the activity of luciferase, which could be reversed
by further introduction of miR-16 inhibitor in dMSCs
(Figure 5A). Similarly, miR-136 significantly suppressed
the expression of a luciferase reporter gene fused to 3′
UTR of PPP2R2A, which could be reversed by further
introduction of miR-136 inhibitor in dMSCs (Figure 5B).
These results further indicate that differentially expressed
miRNAs may be involved in the pathogenesis of PE.

Discussion
Previous studies indicated that PE may be a pregnancy-
induced autoimmune disease, and the imbalanced im-
mune system in the maternal–fetal interface may be one
cause of PE [1,3,4]. Moreover, abnormality in placental
vascular remodeling is also a likely pathogenesis of PE
[9,10]. These are the two main theories for explaining
the development of PE [42]. MSCs are considered to be
immune-privileged and shown to exert a strong inhibitory
effect on other immune cells [14-17], and they have the
ability to promote endogenous angiogenesis and neuro-
genesis through a variety of secreted factors [21]. The ma-
ternal–fetal interface is an important source of MSCs
[22-24]. Therefore, investigation of immune-modulatory,
pro-angiogenic and anti-inflammatory properties of MSCs
at the maternal–fetal interface may open new perspectives
into the understanding of PE [5].
In the present study, miRNA expression profiles showed

differentially expressed miRNAs in dMSCs between healthy
pregnant women and patients with PE. Differential miRNA
expressions were defined as a statistically significant differ-
ence with a ≥2-fold change. Significantly up-regulated 21
miRNAs and down-regulated 28 miRNAs are present in
patients with PE vs healthy pregnant women. Nine top up-
regulated miRNAs including miR-136, miR-495, miR-16,
miR-29b, miR-140-5p, miR-30a, miR-100, miR-494, and
miR-221 and one down-regulated miRNA, miR-1207-5p,
were confirmed by qPCR. A previous study had shown
that miR-16 inhibits the proliferation and angiogenesis-
regulating potential of dMSC [37]. miR-29b contributes to
PE through its effects on apoptosis, invasion and angio-
genesis of trophoblast cells [43]. Moreover, another up-

http://diana.cslab.ece.ntua.gr/microT/
http://www.targetscan.org/
http://www.targetscan.org/
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/


Figure 4 The expression of miRNA-targeted genes in dMSCs from patients with PE and healthy pregnant women. A: The serum was
isolated from five healthy pregnant women and five patients with PE, and concentration of VEGFA in serum was assessed using ELISA. B: The
serum was isolated from five healthy pregnant women and five patients with PE, and concentration of IDO in serum was assessed using ELISA.
C: dMSCs were isolated from five healthy pregnant women and five patients with PE as described in Materials and Methods. Then the expression
of SOCS3 was detected by qPCR. D: dMSCs were isolated from five healthy pregnant women and five patients with PE as described in Materials
and Methods. Then the expression of PPP2R2A was detected by qPCR. dMSC, decidua-derived mesenchymal stem cell; ELISA, enzyme-linked
immunosorbent assay; IDO, indoleamine 2,3-dioxygenase; miRNA, microRNA; PE, pre-eclampsia; PPP2R2A, serine/threonine protein phosphatase
2A 55 kDa regulatory subunit B α isoform; qPCR, quantitative polymerase chain reaction; SOCS3, suppression of cytokine signaling 3; VEGFR,
vascular endothelial growth factor.
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regulated miRNA, miR-181a, was proved to regulate im-
mune balance by inhibiting proliferation and im-
munosuppressive properties of MSCs [44]. Interestingly, it
was found that the levels of miR-136, miR-495, miR-16,
miR-29b and miR-494 were more in patients with more se-
vere PE (proteinuria, >2108 mg/24 h; systolic blood pres-
sure, >160.4 mm Hg; diastolic blood pressure, >110.4 mm
Hg) than those in patients with less severe PE (proteinuria,
<2108 mg/24 h; systolic blood pressure, <160.4 mm Hg;
diastolic blood pressure, <110.4 mm Hg).
Target gene signaling pathway analysis showed that

angiogenesis and response to hypoxia were significantly
regulated by differentially expressed miRNAs. Abnormal-
ity in placental vascular remodeling is a likely pathogen-
esis of PE [9,10]. In particular, an imbalance in circulating
proangiogenic and antiangiogenic factors released by the



Figure 5 Validation of miRNA target. A: The luciferase activity of dMSCs was measured after co-transfection with the indicated VEGFA 3′ UTR
constructs and miR-16 or its inhibitor for 24 h. B: The luciferase activity of dMSCs was measured after co-transfection with the indicated PPP2R2A
3′ UTR constructs and miR-136 or its inhibitor for 24 h. The results are shown as mean ± SE from three representative independent experiments.
*p < 0.05, **P < 0.01 compared with miR-negative. dMSC, decidua-derived mesenchymal stem cell; miRNA, microRNA; PPP2R2A, serine/threonine
protein phosphatase 2A 55 kDa regulatory subunit B α isoform; SE, standard error, UTR, untranslated region; VEGFR, vascular endothelial
growth factor.
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hypoxic placenta has gained currency as a critical link
between placental dysfunction and several maternal
manifestations of PE, particularly endothelial dysfunc-
tion and proteinuria [45]. Besides, it was reported that
miR-16 and miR-29b, which could regulate angiogenesis
[37,43], and another three up-regulated miRNAs, miR-140,
miR-30a, and miR-100, were also associated with angio-
genesis [46-48].
GO analysis also showed that miRNAs involve many

immune response signaling pathways in patients with PE
including the MAPK signaling pathway, TGF beta signal-
ing pathway, T-cell receptor signaling pathway, and B-cell
receptor signaling pathway, etc. In a previous study, it was
found that miR-181a is an immune-regulating factor [44].
miR-181a can regulate the TGF-beta signaling pathway by
targeting TGFBR1 and TGFBRAP1 in dMSCs. In addition,
miR-181a can also enhance secretion of interleukin (IL)-6
and IDO by activating p38 and JNK signaling pathways
in dMSCs [44]. Moreover, it was reported that miR-16
modulates nuclear factor-kappaB-regulated transactiva-
tion of IL-8 gene [49]. miRNA-29 is involved in the adap-
tive immune system and immune-modulation [50,51].
miR-140 regulates TGF-β1/Smad3 pathway [52]. miRNA-
30a and miRNA-221 regulate B cells and mast cells, re-
spectively [53,54].

Conclusions
miRNA expression profiles of patients with PE are signifi-
cantly different from that of healthy pregnant women. Al-
tered miRNAs lead to excessive activation or inactivation
of signaling pathways in dMSCs. These aberrant changes
result in abnormality of immune-modulatory, pro-angiogenic
and anti-inflammatory properties of dMSCs. Our study
further indicates that differentially expressed miRNAs
may be involved in the pathogenesis of PE.

Additional file

Additional file 1: Figure S1. Target gene signaling pathways analysis.
A. The significantly enriched signaling pathways which regulated by
up-regulated miRNAs. The top fifteen enriched signaling pathways were
showed; B. The significantly enriched signaling pathways which regulated
by down-regulated miRNAs. The top fifteen enriched signaling pathways
were showed. Table S1. The functions of differential expressed miRNAs.
Table S2. Decreased miRNA-Gene-network. Table S3. Decreased
miRNA-GO-network.
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