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Abstract

Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease whose etiology remains largely
unknown. The uncontrolled oxidative stress in SLE contributes to functional oxidative modifications of cellular
protein, lipid and DNA and consequences of oxidative modification play a crucial role in immunomodulation and
trigger autoimmunity. Measurements of oxidative modified protein, lipid and DNA in biological samples from SLE
patients may assist in the elucidation of the pathophysiological mechanisms of the oxidative stress-related damage,
the prediction of disease prognosis and the selection of adequate treatment in the early stage of disease.
Application of these biomarkers in disease may indicate the early effectiveness of the therapy. This review is
intended to provide an overview of various reactive oxygen species (ROS) formed during the state of disease and
their biomarkers linking with disease. The first part of the review presents biochemistry and pathophysiology of ROS
and antioxidant system in disease. The second part of the review discusses the recent development of oxidative
stress biomarkers that relates pathogenesis in SLE patients and animal model. Finally, this review also describes
the reported clinical trials of antioxidant in the disease that have evaluated the efficacy of antioxidant in the
management of disease with ongoing conventional therapy.
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Introduction
Systemic lupus erythematosus is an autoimmune inflam-
matory disease characterized by the presence of flare of
autoantibodies, especially against nuclear components.
Although it is believed that the etiology of SLE is multifac-
torial, including immune dysfunction, genetic, hormonal
and environmental, the molecular mechanisms underlying
this systemic autoimmune response remain largely un-
known. A key issue in the pathogenesis of lupus is how
intracellular antigens become exposed and targeted by the
immune system [1,2]. In this regard, excessive production
of ROS and altered redox state which may cause abnormal
activation of apoptosis [3,4], are considered as imperative
factors involved in production, expansion of antibody
flares and various clinical features in SLE [2]. Several stud-
ies have shown the role of ROS in the deregulation of
apoptosis and cause increased apoptosis and delayed in
clearance of apoptotic bodies. The delay in clearance of
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apoptotic cells may prolong interaction between ROS
and nuclear debris and generate neo-epitopes that subse-
quently stimulate broad spectrum of autoantibody forma-
tion leading to inflammation and organ damage in SLE
[5]. The noxious effects of ROS may cause the following
consequence: i) shift of intracellular redox (i.e. decrease
GSH/GSSH ratio) condition, ii) oxidative modification of
lipid, protein and DNA, iii) gene activation of oxidative
stress and gene mutation related to antioxidant enzymes.
Considerable genetic studies in SLE patients and animal

models implicate the role of oxidative stress in the patho-
genesis of SLE. Numerous gene polymorphisms encoding
superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx) and NADPH oxidase encoding gene
NCF2 have been identified in association with SLE risk,
however some of these associations appear to be ethicity
dependent [6]. The Nrf2-Keap1 pathway is important in
protection against oxidative stress and inflammation. A
strong association between Nrf2-653 G/A polymorphism
and the development of nephritis has been reported in
Mexican SLE patients [7]. CAT polymorphism (−330CC
genotype) is significantly associated with thrombocytopenia,
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renal manifestations, as well as production of anti-snRNP
and anti-Scl-70 antibodies in SLE patients [8]. A member
of S-transferase superfamily, GSTM1 may be associated
with the production of anti-RO antibodies, suggesting that
dysfunction of this gene may be related to the anti-RO
autoantibody response or to photosensitivity [9,10].
All biomolecules (lipid, protein and DNA) can be dam-

aged by excessive production of ROS (including ONOO−)
and may be deleterious and concomitant. Product of these
cascades of oxidative modification can be detected in bio-
logical fluid and their abundance correlates with disease
activity and organ damage in SLE patients, which suggest
that oxidative modification act as biomarkers. Increased
MDA (malondialdehyde)-modified proteins, anti-SOD and
anti-catalase antibodies, albumin modification by HNE (4-
hydroxy 2-nonenal) in the sera of SLE patients are associ-
ated with disease activity in SLE patients [11,12]. Levels of
F2 isoprostane (8-iso-PGF2), a derivative of lipid peroxida-
tion, increased in urine from SLE patients and are associ-
ated with disease activity [13]. Many independent studies
show the elevated levels of MDA, F2-Isoprostane, nitric
oxide and diminished levels of reduced glutathione in
patients with lupus nephritis [14-17]. The elegant re-
search from Frosegard group has shown the elevated
levels of oxidized low-density lipoprotein (OxLDL) to-
gether with elevated levels of autoantibodies as risk fac-
tors for cardiovascular disease in SLE patients [18].
Table 1 summarizes various studies of oxidative stress
biomarkers in SLE. These biomarkers are important for
predicting the consequences of oxidation and providing
a basis for designing appropriate interventions to pre-
vent or alleviate an injury. Recently, there has been a
great improvement in assay methods and measurement
accuracy for biomarkers of oxidative stress, which have
been correlated with disease activity and progression of
disease, however this has not been validated in the
clinic.
This review examines the available evidence for the in-

volvement of cellular oxidants in the pathogenesis of SLE
and the current biomarkers of oxidative stress focusing on
their association with disease complication, which may be
useful for developing ideal biomarkers in disease.

Review
Reactive oxygen and nitrogen species
ROS is a collective term for the chemical species that
are formed as a result of incomplete reduction of oxy-
gen. It includes superoxide anion radical (O2

–.), peroxy
radical (ROO−), hydrogen peroxide (H2O2), singlet oxy-
gen (1O2), perhydroxyl radical (HO2

.) and extremely
reactive hydroxyl radical (.OH). ROS are short-lived
molecules produced by normal cellular metabolism that
are well recognized for playing a dual role; they are both
deleterious and beneficial species. At low or moderate
concentrations, ROS is required for the regulation of
many cellular processes, including cell signaling, differ-
entiation, proliferation, growth, apoptosis, and cytoskel-
etal regulation, and can act as lethal weapons for the
host defense system. The harmful effect of free radicals
occurs when there is an overproduction of ROS/RNS or
a deficiency of enzymatic and non-enzymatic antioxi-
dants. Reactive intermediates are either produced by re-
actions involving enzymes such as nicotinamide adenine
dinucleotide phosphate (NADP)H [6], nitric oxide syn-
thase, or by nonenzymatic reactions through mitochon-
drial electron transport chain [46], and reduced transition
metals [47]. ROS can also interact with nitric oxide (NO),
the product of NO synthases, whose expression is usually
accompanied by inflammatory lesions, resulting in the
conversion of NO to various reactive nitrogen species
(RNS.), which include nitrosonium cation (NO+), nitroxyl
anion (NO−) and peroxynitrite (ONOO.). Many independ-
ent studies show a significant correlation between global
lupus disease activity and markers of systemic NO pro-
duction [17].

Sources of reactive oxygen species and their scavengers
Reactive oxygen species mostly originate from mitochon-
dria, blood cells (lymphocytes, RBC) and vascular endothe-
lial cells in patients with SLE and these ROS cause
hyperpolarization of mitochondria, activated T lympho-
cytes, apoptosis and endothelial activation [23,48]. Several
studies have shown increased production of ROS or dimin-
ished levels of intracellular reduced glutathione in various
blood components in SLE patients [19,24]. In addition,
ROS can be produced by other sources like NADPH oxi-
dase (NOX enzyme) in activated phagocytes [49] and to a
lesser extent in macrophage and polymononuclear cells
[50,51], lysosome (myeloperoxidase undergoes a complex
array of redox transformations and produces HOCl) and
microsomes [52,53]. Hydroxyl radicals are generated from
peroxynitrite, which is in turn rapidly formed through the
reaction between NO• and O2

–• under appropriate stoi-
chiometric conditions. Hydrogen peroxide is formed
through the dismutation of O2

–• catalyzed by the enzyme
superoxide dismutase, and is also produced via. action of
several other oxidase enzymes (e.g. aminoacid oxidases).
Tissue inflammation and chronic infection lead to the
overproduction of ·NO and O2

–•, which rapidly combine to
yield peroxynitrite: O2

•– + •NO→ONO2
•−. In addition,

ROS may amplify the inflammation process of gene
expression involved in the inflammatory response, particu-
larly via. activation of the nuclear transcription factor NF-
kβ, which in turn upregulates pro-inflammatory cytokines
and leukocyte adhesion molecules. Exogenous sources of
ROS include; radiation, UV light, x-rays, gamma rays,
chemicals that react to form peroxides, ozone and singlet
oxygen, chemicals that promote superoxide formation,



Table 1 A summary of reported oxidant and antioxidant biomarkers in SLE

Study ROS Lipid
peroxidation

SOD Catalase Glutathione
peroxidase

GSH Nitric
oxide

Protein
oxidation

DNA
oxidation

Tissue/Cell
studied

Shah et al. [14,19-22] ↑ ↑ ↓ ↓ ↓ ↓ RBC, Serum,
Lymphocyte

Perl et al. [23,24] ↑ ↑ ↓ Lymhocyte

Turi et al. [25] ↑ ↓ ↓ ↓ ↓ RBC

Hassan et al. [26] ↑ ↓ ↓ Serum

Kurient & Scofied [4,27] ↑ ↓ Serum

Taysi et al. [28] ↑ ↓ ↓ Serum

Serban et al. [29] ↑ ↓ ↓ RBC, Plasma

Turgay et al. [30] ↑ ↓ ↑ ↓ Plasma

Segal et. al. [31] ↑ Plasma

Bae et al. [32] ↑ ↓ ↓ Plasma

Jovanovic et al. [13] ↑ Plasma

Abou-raya et al. [33] ↑ Serum

Vipartene et al. [28] ↑ ↓ ↓ RBC

Mohan & Das [34] ↑ ↓ ↓ Plasma

Tewthanan et. al. [16,35] ↑ ↓ Plasma

Morgan et. al. [36,37] ↓ ↓ ↓ ↓ ↑ Serum

Zhang et al. [38,39] ↑ ↑ Serum, Blood

Ahsan et al. [40] ↑ Serum

Lunec et al. [41] ↑ Urine

Evan et al. [42] ↑ Serum

Maeshima et al. [43] ↑ Urine

Ho et al. [44] ↑ Plasma

Gilkeson et al. [17] ↑ Serum

Wanchu et al. [45] ↑ Serum

↑, significantly elevated levels; ↓, significantly diminished levels.
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quinones, nitroaromatics, bipyrimidiulium herbicides, che-
micals that are metabolized to radicals e.g., polyhaloge-
nated alkanes, phenols, aminophenols etc. [54,55].
Most damaging ROS are the hydroxyl radical, OH–• and

O2
–•; the latter can be converted into relatively stable,

nonradical hydrogen peroxide by superoxide dismutase
enzyme and then hydrogen peroxide is reduced by three
general mechanisms (Figure 1). First, it is the substrate for
two enzymes, catalase and glutathione peroxidase, which
catalyze the conversion of H2O2 to H2O +O2; this pre-
sumably is a detoxification mechanism. Secondly, H2O2 is
converted by myeloperoxidase (MPO) in neutrophils to
hypochlorous acid (HOCl). This appears to be a mechan-
ism for a physiological toxic agent, since HOCl is a strong
oxidant that acts as a bactericidal agent in phagocytic cells.
Reaction of HOCl with H2O2 yields singlet oxygen (1O2)
and water. The biological significance of singlet oxygen is
unclear. Thirdly, H2O2 is converted in a spontaneous reac-
tion catalyzed by Fe2+ (Fenton reaction) to highly reactive
hydroxyl radical (•OH). As a hydroxyl radical cannot be
eliminated without causing oxidative damage, it reacts
promptly with any biological molecule like lipid, protein
and DNA, which causes severe consequence in the patho-
genesis of SLE [27,36,56,57].

Interaction of reactive oxygen species with lipids,
proteins and DNA
ROS, in particular the hydroxyl radical, react with lipid
membrances and generate reactive aldehydes including
MDA and HNE, in three phase reactions (Figure 2),
which can ‘spread’ oxidative damage through the circula-
tion in SLE [58]. In the initiation phase, a primary react-
ive radical, abstracts a hydrogen atom from a methylene
group to start peroxidation. This results in the formation
of a conjugated diene, leaving an unpaired electron on
the carbon. The carbon-centered fatty acid radicals com-
bine with molecular oxygen, in the propagation phase,
yielding highly reactive peroxyl radicals that react with
another lipid molecule to form hydroperoxides. Peroxyl
radicals are capable of producing new fatty acid radicals,



Figure 1 Main sources of free radical generation and their catabolism. Highly reactive superoxide anions are mainly produced in
mitochondrial, xanthine oxidase and NADPH-oxidase. Superoxide anions can either react with nitric oxide to generate the strong oxidant
peroxynitrite, or be degraded by superoxide dismutase into the less reactive species hydrogen peroxide. Hydrogen peroxide can then be
catabolized by glutathione peroxidase or catalase reaction, react with Fe2+ to form hydroxyl radicals via the Fenton reaction, or be degraded by
the myeloperoxydase, another source of hydroxyl radicals.
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resulting in a radical chain reaction. The cascades of
lipid peroxidation result in a variety of harmful end
products include conjugated dienes, isoprostanes, HNE,
HNE-modified proteins, MDA, MDA-modified proteins,
protein-bound acrolein and oxHDL which are associated
with disease activity in SLE [59-61]. In addition to the
involvement of ROS in lipid peroxidation, ROS can modify
both the structure and function of proteins [36,62].
Metal-catalyzed protein oxidation results in the addition
of carbonyl groups or cross-linking or fragmentation of
proteins. Lipid (peroxidation) aldehydes can react with
sulfhydryl (cysteine) or basic amino acids (histidine, ly-
sine). Similarly, modification of individual nucleotide
bases, single-strand breaks and cross-linking are the typ-
ical effects of ROS on nucleic acids. All these interactions
of ROS with protein, lipid and nucleic acid are involved in
auto-antibody formation in SLE patients [13,63]. Table 2
summarizes the important studies on antibodies formation
against modified lipid, protein and DNA in SLE patients.

Antioxidant defense system
The damaging effect of ROS is limited by the numerous
cellular antioxidant defense mechanisms in the body.
Common antioxidants include: enzymes such as SOD,
CAT and glutathione related enzymes (GPx, GR, GST and
thioredoxin reductase) and heme oxygenase [66], non-
enzymes such as vitamins (A, C, E) and carotenoids, flavo-
noids, glutathione and other antioxidants minerals (copper,
ferritin, zinc, manganese, selenium etc.) [67,68]. They work
in synergy with each other against different types of free
radicals. Vitamin E suppresses the propagation of lipid per-
oxidation, while vitamin C with E impedes hydroperoxi-
dase formation [29]. Antioxidant defences are mainly
dependent upon de novo synthesis of thiol proteins (gluta-
thione and thioredoxin) and diminished levels of the anti-
oxidant molecule glutathione have been associated with
various clinical complications in SLE.

Glutathione
Glutathione (L-γ-glutamyl-L-cysteinylglycine) is required
for many critical cellular processes and plays a particu-
larly important role in the maintenance and regulation
of the thiol-redox status of the cell. In healthy cells and
tissues, more than 90% of the total glutathione pool is in
the reduced form (GSH) and less than 10% exists in the
oxidized form (GSSG) [69]. The GSH/GSSG ratio is a



Figure 2 Major aldehydic products of lipid peroxidation. ROS, in particular hydroxyl radical, react with lipid membranes and generates
reactive aldehydes including malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE), in three phage reactions.
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valuable tool for defining oxidative stress and changes in
this ratio appear to correlate with disease activity in SLE
patients [19,62]. Diminished level of intracellular gluta-
thione has been associated with immune dysfunction (T
cell activation, imbalance Th1/Th2 cytokines and de-
regulation of apoptosis) and organ damage (nephritis,
CNS) in SLE [20,70,71]. Furthermore, replenishment
of the intracellular glutathione has been associated
with diminution of autoantibody levels and the devel-
opment of nephritis and prolong mice survival [72]
Table 2 A summary of reported antibodies against antioxidan

Study Anti-SOD
antibody

Anti-catalse
antibody

Anti-oxidised
antibody

An
HN

Mansour et al. [11,12] ↑ ↑

Kurien & Scofield [4] ↑

Wang et al. [64]

Jovanovic et al. [13]

Toyoda et al. [65] ↑

Lopez et al. [18]

↑, significantly elevated levels; ↓, significantly diminished levels.
while in SLE patients, it has been associated with im-
proved disease activity and fatigue [24,35]. These stud-
ies conclude that depletion of intracellular glutathione
is an indicator of oxidative stress in SLE and replenish-
ment of intracellular glutathione may attenuate disease
complications.

Superoxide dismutase
Superoxide dismutase is a metalloprotein, considered to
be the first line of defence against free radical formation.
t enzymes and oxidatively modified proteins in SLE

ti-MDA or
E adduct

MDA/HNE modified protein Anti-lipid
antibody

Tissue/Cell
studied

↑ Serum

Serum

↑ ↑ Serum

↑ Plasma

Serum

↑ Serum
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It catalyzes dismutation of superoxide radical into oxygen
and hydrogen peroxide. Superoxide radical, if not scav-
enged effectively, may directly inactivate several enzymes
like CAT and GPx which are needed to eliminate hydro-
gen peroxide from intracellular medium. Three forms of
this enzyme found in human are: SOD1 located in cyto-
plasm, SOD2 in mitochondria and SOD3 in extracellular
[73]. SOD1 is a dimeric, while SOD2 and SOD3 are tetra-
meric. SOD1 and SOD3 contain copper and zinc, while
SOD2 has manganese in its reactive center. Several groups
have reported a decreased activity of SOD and formation
of auto-antibody against SOD enzyme in SLE patients
[14,21,30]. It is speculated that the antibody to SOD is re-
sponsible for inactivation of enzyme and exaggerated oxi-
dative damage in SLE.

Catalase
Catalase, located in peroxisomes (80%) and cytosol (20%),
decomposes hydrogen peroxide to water and oxygen with-
out the production of free radicals [74]. Concentration of
CAT is highest in liver, kidney and erythrocyte and low in
connective tissues [75]. In tissues, it exists mainly as par-
ticle bound (mitochondria and peroxisomes), while in
erythrocytes it exists in soluble state. Catalase does not
show significant activity under physiological conditions
due to its lower affinity than glutathione peroxidase for
hydrogen peroxide, but becomes an important enzyme at
disease state where concentration of H2O2 is elevated
[47]. CAT polymorphism (−330CC genotype) showed a
significant association with thrombocytopenia, renal
manifestations, as well as production of anti-snRNP and
anti-Scl-70 antibodies in SLE patients [8]. An elegant
study from Mansour group showed elevated levels of
auto-antibodies against catalase in SLE patients. In two
different clinical studies, they have demonstrated that
SLE patients have increased levels of IgG antibodies
against catalase which are associated with disease com-
plication [11,12].

Glutathione peroxidase and glutathione reductase
Glutatione peroxidase and reductase are glutathione
dependent enzymes located in the cytoplasm, mito-
chondria and nucleus [76]. Glutatione peroxidase me-
tabolizes hydrogen peroxide to water using reduced
glutathione as a hydrogen donor and is recycled back
to glutathione reductase by cofactor NADPH. It plays
an important role in the defense mechanism in the
erythrocytes against lipid peroxidation damage [77]. In
SLE patients, decreased activity of GPx and GR may
lead to altered redox state [30].

Biomarkers of oxidative stress
The production of free radicals is an integral part of me-
tabolism, which if unchecked, cause oxidative stress.
Oxidative stress damage to lipid, protein, nucleic acids
and carbohydrates are deleterious and concomitant. There
are substantial accumulation of data suggest that oxidative
stress biomarkers can not only determine the extent of
oxidative injury, but also indicate the source of oxidant
[5]. Biomarkers of oxidative stress are also important for
predicating the consequences of oxidation and for provid-
ing a basis for designing appropriate intervention to pre-
vent or alleviate injury. The most intuitive goals for a
biomarker are to help the diagnose symptomatic and pre-
symptomatic disease and to provide surrogate endpoints
to demonstrate clinical efficacy of new treatments. In the
diverse nature of disease like SLE, single biomarker ana-
lysis can not reflect the whole body oxidative damage and
a series of biomarkers may be required and each needs to
validate in prospective clinical studies. A valid biomarker
should be [78,79]:

1. A stable product of oxidative stress, not susceptible
to artificial induction or loss during storage.

2. Detectable in the target tissue or a valid surrogate
tissue where it causes oxidative modification and
damage.

3. Present in sufficient and measurable concentrations.
4. Determined by an assay that is specific, sensitive,

reproducible, and robust.
5. Free of confounding factors from dietary intake.
6. Measurable within a detection limit of a reliable

analytical procedure.

Availability of biomarkers that provide an accurate as-
sessment of the degree of oxidative stress are important
in clinical trials aimed at investigation of the effective-
ness of antioxidant therapy for preventing or alleviating
complications. Recently, there has been a great improve-
ment in assay methods and measurement accuracy for
biomarkers of oxidative stress in SLE patients and ani-
mal models. Table 3 summarizes the selected oxidative
stress biomarkers and their methods of detection. ROS/
RNS has been directly detected in vitro by electron spin
resonance with or without spin-trapping reagents or by
chemiluminescence. These direct detection methods have
not yet applied for clinical examination because of the in-
stability of many reactive species (half-life even much
shorter than second) and the requirement of sophisticated
techniques. However, recently 2′,7′-dichlorofluorescein
(H2DCF) and Dihydroethidium (DHE), have been used
extensively to evaluate ROS production in various sam-
ples in SLE patients by flow cytometer [19,80]. The end
products/metabolites of ROS/RNS are stable, can accu-
mulate to detectable concentrations, reflect specific
oxidation pathways, and correlate with disease severity.
These are shown schematically in Figure 3. Of these
modifications, some are known to have direct effects



Table 3 List of oxidative stress biomarkers and their methods of detection

Free radicals and reactive species Markers/probes and detection methods

ROS/RNS

Direct measurement ROS 1. Electron spin resonance (ERS) – Spectroscopy method

2. Fluorescence (2′,7′ dichlorofluorescein) - Flow cytometry/spectroflurometry

RNS 1. Ion electrode method

Indirect measurement

Lipid 1. Malondialdehyde (MDA) – colorometric, flurometric, ELISA, HPLC

2. Thiobarbituric acid reactive substances (TBARS) - colorimetric, flurometric

3. 4-Hydroxynonenal (4-HNE) – GC- MS, HPLC

4. F2 isoprostanes (8-iso-PGF2) – colorimetric, flurometric, ELISA

5. Lipid hydroperoxidation - Hexanoyl - Lys adduct (HEL) - ELISA, HPLC

6. Oxidized low density Lipoprotein – HPLC, ELISA

Protein 1. Carbonyl – colorometric, ELISA

2. 3-nitrotyrosine - GC-MS, HPLC, ELISA

3. Protein Thiol - colorimetric, ELISA

DNA 1. 8-Hydroxy-2′deoxyguanosine (8-OHdG) - HPLC, LC, MC, ELISA

2. DNA Break - comet assay, flow cytometry

Antioxidant Antioxidant enzyme activity Super oxide dismutase, Glutathione Peroxidase, Catalase, Glutathione reductase,
Xanthine oxidase- ELISA, colorimetric method

Glutathione - HPLC, colorimetric/flurometric method

Antioxidant non-enzymes Ascorbic acid, α tocopherol, β carotene, Lycopene – colorimetric Zinc, Selenium,
Mn, Cu, Fe – Flame Photometrry

Antioxidant capacity 1. Total Antioxidant Status (TAS) – colorimetric method

2. Triolox Equivalent antioxidant Capacity (TEAC) – colorimetric method

3. Ferric Reducing Antioxidant Power (FRAP) – colorimetric method

4. Asymmetric Dimethylarginie (ADMA) – colorimetric method
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on function of molecule (e.g. inhibit antioxidant enzyme
function), but others merely reflect the degree of oxida-
tive stress in the local environment. These metabolites
include lipid peroxidation end products (malondialdehyde,
F2-isoprostane, HNE, acrolein and Ox-LDL), oxidized
proteins (protein carbonyl and protein nitrotyrosine),
DNA oxidation (8-OHdG), nitric oxide and antioxidant
enzymes (SOD, CAT, GPx, GR and total antioxidant
capacity [17,44,45].

Biomarkers of lipid damage
Lipids are susceptible targets of oxidation, and lipid perox-
idation products are potential biomarkers for oxidative
stress status in SLE [34,81]. Lipid peroxidation generates a
variety of relatively stable decomposition end products,
mainly unsaturated reactive aldehydes, such as MDA,
Hexanoyl-Lys adduct (HEL), HNE and 2-propenal (acro-
lein) [82], and isoprostanes [83], which can be measured
in various biological samples (serum/plasma and urine) as
an indirect index of oxidative stress. Three of the most
well studied markers of lipid peroxidation are MDA, HNE
and 8-isoPGF2 in SLE patients and animal models, though
some others lipid peroxidation markers (acrolein, OxLDL,
oxidized phospholipid/apolipoprotein-B) have been re-
ported in few studies [15,18].
Malonaldehyde
MDA is generated in vivo by peroxidation of polyunsatu-
ated fatty acids and represent a stable end product of
lipid peroxidation. It is an extensively studied biomarker
of lipid peroxidation in SLE patients and animal models
due to the simple method of detection. MDA is typically
quantified from various blood compartments (plasma,
serum, lymphocytes) and tissue using a colorimetric assay
based on the reaction between MDA and thiobarbituric
acid (TBA). This is simple and is the most frequently used
method in lipid peroxidation research, but other (alde-
hydes) compounds also react with TBA to form color that
can interfere with this assay. Other more sensitive methods
like HPLC, LC-MS and MS-MS can separate MDA from
other aldehydes and this is suggested as a sensitive tech-
nique for measuring levels of MDA in various biological
fluids in SLE patients, though some scientists question its
clinical utility. Recently, a high sensitive ELISA method has
been developed for measuring MDA levels in serum/
plasma or other biological fluids. This antibody based
method is typically validated against the measurement of
MDA by HPLC and it demonstrates better performance
with improved specificity [84]. Increased levels of MDA
have been associated with many clinical features like lupus
nephritis and tissue damage in SLE [14,25]. Several groups



Figure 3 Formation of oxidative modified biomarkers by reactive oxygen species. Lipid peroxidation biomarkers: malondialdehyde,
F2-isoprostane, acrolein and Ox-LDL. Protein oxidation markers: protein carbonyl and protein nitration. Oxidative DNA damage biomarkers:
8-hydroxy-2′-deoxyguanosine (8-OHdG). Antioxidant enzymes and molecules: superoxide dismutase, catalase, glutathione peroxidase, oxidized
glutathione, total antioxidant capacity.
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have shown an increased level of MDA and its association
with nephritis and CVD in SLE patients [14,25,26]. The
clinical trials attempting to replenish intracellular glutathi-
one using N-acetyl cysteine (NAC) (24 SLE patients, Perl
group and 40 SLE patients, Tewthanom group) have
shown to reduce MDA levels and lupus nephritis [24,35].
These studies suggest a potential role of lipid oxidation in
prediction the progression of nephritis and response to
therapy. However, the mechanism of the action of NAC is
currently under investigation and further studies are re-
quired to determine the outcome of NAC treatment with
SLE patients.

4-hydroxy-2-nonenal
HNE is a major and toxic aldehyde generated by free
radical attack on polyunsaturated fatty acids (arachi-
donic, linoleic, and linolenic acids) and is considered a
second toxic messenger of oxygen free radicals [85]. It is
enduringly formed at basal concentrations under physio-
logic conditions, but its production is greatly enhanced
in lipid peroxidation condition. Level of HNE can be
measured by methods like HPLC, GM-CS, however,
ELISA is the most used method in SLE patients due to
the simplicity of the assay. Increased levels of HNE have
been demonstrated in the MRL/lpr as well as in SLE and
associated with increased onset of disease [86,87]. In-
creased HNE has been shown to exhibit facile reactivity
with various biomolecules, including proteins and DNA,
and is regarded as a sensitive marker for evaluating
oxidative stress in disease state [65,87]. However, a lon-
gitudinal study may be helpful to understand its associ-
ation with clinical feature in SLE patients.

F2-Isoprostanes
F2-Isoprostanes are a group of bioactive prostaglandin-
like compounds generated by free radical mediated perox-
idation of arachidonic acid in vivo [88]. Sources of free
radicals for isoprostanes formation include: i) mitochon-
drial electron transport chain (O2

.− and .OH), ii) P450 en-
zymes (O2

.− and .OH), iii) lipoxygenase (hydroperoxyl
radical (HO2

. ) and iv) transition-metal catalysed formation
of free radicals [64,89]. F2-Isoprostanes especially 8-iso-
PGF2-alpha has been proposed as specific, reliable, and
non-invasive markers of lipid peroxidation in vivo in vari-
ous biological fluids among which plasma and urine are
the most commonly used samples [33]. Unlike MDA,
levels of F2-Isoprostanes are not influenced by lipid con-
tent in diet. Available data indicate that quantification
of F2-Isoprostanes in either plasma or urine gives a
highly precise and accurate index of oxidative mediated
vascular involvement in SLE patients [33]. Measurement
of F2-Isoprostanes may be useful to understand the
causative role of oxidative damage in vascular disease in
SLE. Mass chromatography technique (GC-MS) and
ELISA can accurately and sensitively measure F2-
Isoprostanes in biological samples. ELISA is a frequently
used technique to quantify F2-Isoprostanes because of
its low cost and ease of use [90]. Levels of F2-
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Isoprostanes in plasma and urine samples have been
shown to correlate with in vivo oxidative stress in a
number of studies in SLE patients. Studies from Avalos
(95 SLE patients), Segal group (71 SLE patients) and
Abou-Raya (60 SLE patients) have shown that F2 iso-
prostane levels are associated with increased disease ac-
tivity, fatigue and lower quality of life [31,33,91].
Among all the available markers of lipid peroxidation,

F2-Isoprostanes is well suited as a biomarker for the fol-
lowing reasons: (i) In vivo formation of isoprostane in-
creases as a function of lipid peroxidation. (ii) It is stable
and can be easily measured with high accuracy and is
not influenced by lipid content in the diet. (iii) It is
present in detectable amounts in all healthy tissues and
biological fluids, thus allowing definition of a reference
interval [79]. Besides these biomarkers, some other bio-
markers of lipid peroxidation like, OxLDL, oxidized
phospholipid/apolipoprotein-B have been reported to be
associated with arterial disease and renal manifestations
in SLE patients. Also, NAC treatment has shown to im-
prove cardiovascular and renal outcomes in these pa-
tients [15,18,24].

Biomarkers of protein damage
Oxidative modification of proteins is known to affect
protein function. Protein carbonyls and protein nitrotyr-
osine are widely used and chemically stable biomarkers
of protein oxidation in SLE [92].

Protein carbonyls
The protein carbonyls group are formed by either direct
oxidation of certain amino acid residues, particularly ly-
sine, arginine, threonine, proline and histidine or secon-
darly reaction with product of lipid peroxidation (e.g.,
HNE) or glycoxidation reaction with lysine group [79].
Protein carbonyls are better studied than protein nitration
in SLE patients. They circulate for longer periods in blood
as compared to other oxidized product, can be stored for
a long time, which make them suitable markers for pro-
tein oxidation. Several studies have shown an elevated
level of total protein carbonyls in SLE patients and exhib-
ited varying correlations with disease activity [36-38]. It
can be measured by spectrophotometer, HPLC, Western
blot and ELISA [93]. However, these methods cannot
identify which amino acid residues are oxidatively attacked
and which protein has been modified. Furthermore, the
specific association of protein oxidation and organ damage
in SLE patients needs further longitudinal study to estab-
lish a relationship to use as a promising biomarker.

Protein nitrotyrosine
Protein nitrotyrosine is generated by RNS species like
peroxynitrite (ONOO−) and nitrogen dioxide (NO2) on
tyrosine residues of protein. Many independent studies
show increased levels of 3-nitrotyrosine and which is as-
sociated with arthritis, cardiac and renal involvement in
SLE patients [39,40]. The 3-nitrotyrosine can be mea-
sured by antibody based ELISA method as well as by
GC-MS and LC-MS with more precision. However, more
efforts are needed to improve the methodology for the
measurement of 3-nitrotyrosine in particular when con-
centration is very low and further studies are required to
appraise the association of circulating nitrated proteins and
disease complication like cardiac and renal in SLE patients.

Biomarkers of DNA damage
Free radicals may also bring about the oxidative dam-
ages of DNA that are manifested by the development of
various complications in SLE patients [43,93]. The most
commonly used marker of oxidatively modified DNA is
8-hydroxy-2′-deoxyguanosine (8-OHdG), a product of
oxidatively modified DNA base guanine [42,93,94]. Bio-
logical materials most often used to measure levels of 8-
OHdG include, serum, plasma, urine and tissues. Levels
of 8-OHdG in various biological samples (specially
urine) has been correlated with disease activity in SLE
patients [41], thus 8-OHdG is a useful marker for study
of DNA damage caused by free radicals. Many methods
such as HPLC, GC-MS, LC-MS and ELISA have been
available to measure levels of 8-OHdG in the biological
samples and are reviewed in detail in several articles
[95-97]. HPLC is a frequently used method with high
accuracy and sensitivity, but the procedure is complex
and time-consuming making it less promising compared
to ELISA in clinical use [97,98]. Measurement of urinary
8-OHdG has been found to reflect the whole body oxi-
dative damage [78,98] and was independent of dietary
influence in human [99].
Besides above oxidative stress markers of biomolecules

(lipid, protein and DNA), antioxidant enzymes/mole-
cules have been regularly used to evaluate the antioxi-
dant defense system in human body [100]. Among these
antioxidant enzymes (SOD, CAT, GPx, XO)/molecules
(ascorbic acid, β-carotene, Zn, Selenium, Cu, Fe), gluta-
thione redox (GSH/GSSG) has been shown to be a reli-
able marker for whole body antioxidant index in disease
[28,32,101,102]. It has been well established that a
decrease in GSH concentration may be associated with
the pathogenesis of SLE [19,22,62]. Several methods
have been optimized to measure glutathione forms in
human samples, including colorimetric, HPLC and GC-
MS. Even after 3 decades of incredible research on
oxidative stress in SLE, no biomarker of oxidative stress
is currently accessible for clinical use, however there
are some markers, glutathione, HNE, F2 isoprostane,
8-OHdG are emerging as reliable markers for measur-
ing oxidative stress and reflecting disease activity in SLE
patients.
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Antioxidant therapy for SLE
As described in the preceding sections, imbalance be-
tween oxidant and antioxidant enzymes in favor of the
former and contributes to the pathogenesis of SLE. Grace-
ful research from various investigators suggest that restor-
ation of the redox balance using antioxidant agents (NAC)
or diminishing effect of oxidative stress by intake of anti-
oxidant nutrients, vitamins A, C and E, carotene, lycopene
etc., may attenuate various oxidative stress induced com-
plication in SLE [24,34]. Among all the antioxidant treat-
ment to restore the redox balance, NAC has shown to be
a promising alternate therapy in both SLE patients and
animal models. Murine models of lupus showed that NAC
treatment suppressed autoantibody formation, reduced
nephritis and prolonged survival [72]. Several groups have
shown that the decrease in intracellular glutathione has
been associated with many clinical features like, neph-
ritis [14], CNS [103], endothelial activation in cardiovas-
cular and cerebrovascular involvement [104] in SLE
patients. Administration of NAC has shown beneficial
effect in mild SLE patients in terms of decreasing lipid
peroxidation, improve CNS complication [103], endo-
thelial function [104,105] in patients with cerebrovascu-
lar involvement. Moreover, it has been shown that NAC
treatment control T cell function by regulating rapamy-
cin (mTOR) mechanism [106]. Other antioxidant like
cystamine (CYST) has shown to be beneficial in the
treatment of (NZW×NZW)F1 lupus-prone mice, how-
ever CYST in the treatment of SLE patients are lacking
[107]. Collectively, therapeutic interventions that re-
plenish the redox balance or decrease exposure to ROS
and/or augment antioxidant defenses might be benefi-
cial adjunctive therapy in the treatment of oxidative
damage in SLE.

Conclusions
Oxidative stress biomarkers may have a role in the fu-
ture to assist clinical decisions regarding the use of
antioxidant therapies and their efficacy. There has been
great progress in the development of oxidative stress
biomarkers, but due to the complex nature of disease,
there is an extremely low possibility that a single bio-
marker can reflect the whole body of oxidative damage
and its role in the pathophysiology of disease. Instead a
series of biomarkers may be required and each needs to
be validated in prospective clinical studies. It might also
be essential to determine which particular marker, alone
or in combination with others, can serve as true indica-
tor of the contribution of oxidative stress to a disease.
Methodologies need further improvement, so that they
can be validated among patients and apposite for clinical
use. Pilot clinical study on SLE patients showed the re-
plenishment of intracellular glutathione using NAC re-
duce oxidation of lipid, protein and DNA and improved
organ damage in SLE patients. However, future controlled
clinical studies are required to test the broad spectrum of
the NAC effect and its mechanism of action in combin-
ation with conventional therapy in SLE patients. More-
over, the measurement of biomarkers with the intention
of accurate determination and their association with the
improvement of disease during antioxidant therapy may
open the new door for the management of disease.
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