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Cell and tissue tropism of enterovirus 71 and
other enteroviruses infections
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Abstract

Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease
(HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal
encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan,
Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an
important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The
mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction
between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor
binding is the first step in the development of viral infections, and viral factors (e.g., 5′ UTR, VP1, 3C, 3D, 3′ UTR), host
factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis
of viruses are determined by a combination of several factors. This review article provides a summary of host and virus
factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.
Review
Introduction
Enterovirus 71 (EV71), a member of the family Picorna-
viridae, poses a persistent global public health threat.
EV71 infections typically cause hand, foot, and mouth
disease (HFMD) or herpangina; however, EV71 has also
been implicated as the etiological agent in several large-
scale outbreaks of severe neurological complications in
children worldwide [1]. In recent years, an increase in
EV71 activity has been noted throughout the Asia-Pacific
region [2-6]. Severe neurological complications, including
brainstem encephalitis, meningitis, poliomyelitis-like par-
alysis, and even death have occurred in this region. In
1998, an EV71 epidemic occurred in Taiwan, with the
virus infecting over 120000 people and killing 78 children.
Numerous small-scale EV71 epidemics have also occurred
since 1998 in Taiwan [2].
EV71 is a positive-stranded RNA virus [7]. This viral

RNA has a small protein named VPg covalently attached
to its 5′ end and is polyadenylated at its 3′ terminus.
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The genomic RNA is approximately 7500 nucleotides long.
The 5′ untranslated region (5′ UTR) is 745 nucleotides
long and highly structured, containing a cloverleaf-like
structure that is integral for viral RNA synthesis and an in-
ternal ribosomal entry site (IRES) that is critical for the dir-
ection of viral mRNA translation. The cloverleaf-like
structure at the 5′ end of this region is a multifunctional,
cis-acting replication element that interacts with viral and
cellular proteins to form a ribonucleoprotein complex. The
approximately 450-nt IRES in the 5′ UTR mediates the ini-
tiation of picornavirus translation. When the 40S ribosomal
subunit recognizes a sequence, RNA structure, or ribonu-
cleoprotein complex within the IRES, initiation occurs at
the authentic start codon. It has been reported that
cellular proteins (such as poly(C)-binding protein 1
(PCBP1), poly(C)-binding protein 2 (PCBP2), polypyri-
midine tract-binding protein (PTB), heterogeneous nuclear
ribonucleoprotein A1 (hnRNP A1), heterogeneous nuclear
ribonucleoprotein K (hnRNP K), La, upstream of N-ras
(Unr), far upstream element binding protein 1 (FBP1), and
far upstream element binding protein 2 (FBP2)) associate
with the picornaviral 5′ UTR and participate in either viral
RNA replication or viral IRES activity, or both [8-14]. The
viral RNA encodes a single large polyprotein, which under-
goes several self-processing events that are mediated by
virus-encoded proteases (2A and 3C) to produce mature
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viral proteins (including 11 mature proteins and numerous
partially processed products, depending on the virus). Four
of these proteins (VP1-VP4) constitute the virus capsid,
and the others participate in viral replication [15].
Pathogenesis is a multistep process: the virus-receptor

interaction is the first step to initiating infection and the
development of a disease is influenced by the intracellu-
lar milieu; induced cell functions, such as the capacity of
the host to develop an effective immune response; the
speed of virus replication; cytopathogenicity; and the
spread of infection within and between tissues or organs,
which might or might not depend on the presence of
specific or different cellular receptors. This article re-
views viral and host factors involved in the cell and tis-
sue tropism of enteroviruses.

Viral factors contribute to cell and tissue tropism
EV71 serotypes are divided into 3 major genetic lineages:
lineage A for which the prototype is the BrCr strain, and
lineages B and C, which are further subdivided into sub-
genogroups B1 to B5 and C1 to C5 [3,16]. Previous ani-
mal studies have shown that a mouse virulent strain of
human EV71 belonging to subgenogroup B3 by serial
passage is present in newborn BALB/c mice (MP-26 M).
This virus strain expressing the VP1-G145E mutation
increases viral growth and virulence in mice [17]. In the
subgenogroup-B5 mouse-virulent EV71 strain, viruses
expressing VP1-K244E mutation are critical genetic de-
terminants of virulence [18]. Previous studies have re-
ported that the C1 subgenogroup is rarely the cause of
central nervous system (CNS) infections [3,4]; however,
modifying a key mutation (Q145E) into capsid protein
VP1 of the subgenogroup-C4 strain of EV71 generates a
mouse-virulent EV71 strain [19].
Numerous studies have indicated that the 5′ UTR and

3′ UTR of enteroviruses exert a considerable influence
on tissue tropism, neurovirulence, and viral pathogenesis
[20-23]. Nucleotides 480, 481, and 472 in the 5′ UTR of
PV are cited as neurovirulent determinants of PV1, 2,
and 3 [24-26]. Stem-loop II within the 5′ UTR of CVB1
and CVB3 determines the cardiovirulence phenotype
[27]. In addition, nucleotide C158 in stem-loop II of the
5′ UTR of unadapted isolated EV71 strain 237 contrib-
utes to virulence in mice [28].
Although previous studies in which animal models

were used have succeeded in identifying genetic modifi-
cations that attenuate the virulence of enteroviruses,
including coxsackieviruses, poliovirus, and EV71 [29-33],
attempts to understand the underlying mechanism of
virulence attenuation and the cell or tissue tropism of
pathogenesis have not been assured.
Kok et al. reported that the modification of EV71 UTRs

(5′ UTR and 3′ UTR) impairs growth in a cell-specific
manner [34]. Replacing the entire EV71 5′ UTR with that
of human rhinovirus 2 (HRV2) resulted in a small reduc-
tion in growth efficiency in cells of both nonneuronal
(rhabdomyosarcoma; RD) and neuronal (SH-SY5Y) origin
because of reduced translation efficiency. However, introdu-
cing a 17-nucleotide deletion into the proximal region of
the 3′ UTR markedly reduced the growth of EV71-HRV2
in SH-SY5Y cells [34].
Cordey’s group analyzed the genome of EV71 from

various sites of infection in an immunocompromised
host with disseminated disease. In vitro reverse genetics
experiments in various EV71 lineages and in silico mod-
eling data showed that the VP1 BC loop region of EV71
(L97R) plays a critical role in cell tropism independent
of the EV71 lineage and, thus, might have contributed to
dissemination and neurotropism in the immunocom-
promised patient [35].

Host factors modulate cell and tissue tropism
In addition to viral factors, several host factors are also
involved in the cell and tissue tropism of enteroviruses.

Receptors are the first step of viral infection
Infection of cells by a cell-free virus and virus spread
from cell to cell are different processes that might de-
pend on the presence of different cellular surface mole-
cules. In infected organs, cell-to-cell spread contributes
substantially to the pathogenesis of a viral disease. When
enteroviruses infect humans, they target numerous organs,
causing gastrointestinal, myocardial, respiratory, and CNS
diseases. Virus infection initiates after the viruses bind to a
receptor on the cell surface; cellular receptors for viruses
have been considered the primary determinants of cell and
tissue tropism and pathogenicity. Recently, human scaven-
ger receptor class B member 2 (hSCARB2) and P-selectin
glycoprotein ligand-1 (PSGL-1) have been identified as re-
ceptors for EV71 [36,37]. In addition, EV71 uses SA-linked
glycans as receptors for infection [38].
hSCARB2, which was originally identified as an EV71 re-

ceptor on RD cells, is expressed on a broad variety of cell
types. Scavenger receptor class B, member 2 (also known
as lysosomal integral membrane protein II, LGP85, and
CD36b-like-2) is composed of 478 amino acids and belongs
to the CD36 family. hSCARB2 is one of the most abundant
proteins in the lysosomal membrane and participates in
membrane transportation and the reorganization of the
endosomal/lysosomal compartment. Several studies have
suggested that hSCARB2 plays critical roles in efficient
EV71 infection and the development of disease in humans
[37,39]. EV71 binds to SCARB2 through a canyon of VP1
around residue Gln-172 for virus infection, and the entire
exon 4 of SCARB2 is responsible for the interaction with
the VP1 protein of EV71 [39,40]. In addition, Coxsackie-
virus A14 (CVA14) and Coxsackievirus A16 (CVA16),
which are also major causative agents of HFMD, also use
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hSCARB2 as a receptor [37,41]. Coxsackievirus A7 (CVA7),
which is occasionally associated with neurological diseases
as well as EV71, also uses hSCARB2 for infection [41].
Enteroviruses must escape host immune system defenses

to reach the CNS, and can cross the blood–brain barrier
and become disseminated to the CNS from the blood-
stream, infected leukocytes, or neural cells [42]. For polio-
virus, CNS invasion is thought to occur through either the
disruption of the blood–brain barrier or retrograde axonal
transport [43]. In contrast, PSGL-1, which was first identi-
fied as an EV71 receptor on Jurkat T cells, is primarily
expressed on leukocytes, where it mediates interaction with
selectins and thus serves a crucial function in inflammatory
processes [36]. Some EV71 strains bind to PSGL-1 and
infect immune cells, but others do not. Nishimura et al.
observed that EV71 binds to the PSGL-1 N-terminus,
and that binding depends on tyrosine sulfation of the
N-terminus [44]. They also observed that a single
amino acid, residue 145 of the viral capsid protein
(VP1-145), determines whether a virus binds to PSGL-
1, and that it functions by influencing the orientation
of a nearby lysine residue (VP1-244) on the virus
surface. They proposed that VP1-145 controls virus
tropism by changing the accessibility of the positively-
charged lysine side chain of VP1-244 to the negatively
charged, sulfated N-terminus of PSGL-1. These results
shed new light on virus-receptor interaction and EV71
tropism for PSGL-1-expressing leukocytes [45].
PSGL-1 is expressed mainly on leukocytes, but SCARB2

is widely expressed on various cell types, including neurons
in the CNS. Moreover, unlike PSGL-1, SCARB2 can be
used by most EV71 strains as an entry receptor [36,37].
Previous studies have reported that EV71 enters host cells
through a mediated pH- and clathrin-dependent endocyto-
sis pathway [46]. In addition, studies have reported that, to
evaluate the role of SCARB2 and PSGL-1 during uncoating,
the step of uncoating EV71 requires both SCARB2 and an
acidic environment that forms after the virus-receptor com-
plex is internalized into endosomes. However, this result
was not observed in PSGL-1 [40,47]. Therefore, SCARB2 is
capable of viral binding, viral internalization, and viral
uncoating and greatly contributes to the early steps of
EV71 infection [47].

Other host factors
The replication of many viruses is restricted to certain
cells and tissues in the host. This tissue tropism results
in a distinct disease pattern unique to each virus. Be-
cause virus infection initiates after viruses bind to a re-
ceptor on the cell surface, cellular receptors for viruses
have been considered the primary determinants of tissue
tropism. However, after identifying receptors for numerous
viruses, it became apparent that receptor distribution in the
host is wider than that in the virus replication sites [48].
This indicates that virus tropism might be determined by
factors other than the virus receptor.
Internal ribosomal entry site transactivating factors
(ITAFs) are involved in viral translation
The viral translation of enterovirus is IRES-dependent.
IRES-mediated initiation might require both canonical initi-
ation factors and IRES transactivating factors (ITAFs) that
are not involved in cap-mediated initiation. ITAFs are cellu-
lar proteins that are not involved in normal cap-dependent
translation but facilitate cap-independent translation.
Different viral IRESs have different ITAF requirements,
although several requirements are shared. ITAFs might
serve as IRES chaperones, binding to RNA across mul-
tiple domains and stabilizing the entire IRES in a con-
figuration that is appropriate for binding canonical
translation factors, and ultimately ribosomes for trans-
lation. The ITAFs involved in enteroviruses replication
and translation include PTB, nPTB, DRBP76, PCBP1,
PCBP2, unr, La, hnRNP A1, hnRNP K, FBP1, and FBP2
[8-14,49]. However, some cellular factors, because of their
cell and organ-specific distribution, might determine viral
translation, propagation, virulence, and pathogenesis.
Mutations critical for the CNS attenuation of the Sa-

bin vaccine strains of poliovirus are located within the
viral IRES. The major determinant of neuroattenuation
is a single-point mutation located within the viral IRES
at nt 480, 481, or 472 in the cases of Sabin type 1 (Sa-
bin1), Sabin2, and Sabin3, respectively [24-26]. A previ-
ous study showed that PTB and nPTB bind to a site
directly adjacent to the nt 472 attenuating mutation, and
binding at this site was less efficient on the Sabin3 IRES
than on the PV3 IRES [23]. Translation mediated by the
PV3 and Sabin3 IRESs in neurons of a chicken embryo
spinal cord demonstrated a translation deficit for the
Sabin3 IRES that could be rescued by increasing PTB
expression in the CNS [23]. These data suggest that the
low levels of PTB available in the CNS, as well as the re-
duced binding of PTB on the Sabin3 IRES, leads to its
CNS-specific attenuation. Therefore, variable IRES trans
activity of PTB and its neural isoform nPTB have been
implicated in the neuroattenuation phenotype of the
Sabin3 strain [23].
Some investigations have shown that doubled-stranded

RNA-binding protein 76 (DRBP76) is associated with, and
specifically repressed, the HRV2 IRES in neuronal but
not in non-neuronal cells [49,50]. DRBP76 contains 2
dsRNA-binding motifs and is almost identical to M-phase
phosphoprotein 4, NF90, translation control protein 80
(TCP80), and NF associated with dsRNA-1 (designated
NFAR-1). Moreover, DRBP76 depletion in neuronal cells
enhances rhinovirus IRES-driven translation and virus
propagation [50].
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Interferon response controls tissue tropism and
pathogenesis
Picornaviruses are sensitive to IFNs, which play a central
role in the innate immune antiviral response. The alpha/
beta interferon (IFN-α/β) response controls tissue trop-
ism and the pathogenicity of poliovirus and coxsackie-
virus B3 (CVB3) [51,52]. AG129 mice lack alpha/beta
interferon and IFN-γ receptor genes and were initially
generated to study the in vivo antiviral effects of IFN-α/
β and IFN-γ [53]. When AG129 mice were infected with
a non-mouse-adapted strain of EV71 (5865/SIN/00009),
the virus exhibited neurotropism and caused neurological
damage that was likely responsible for the limb paralysis
observed in the infected AG129 mice [54].
Enteroviruses may enter the CNS through the blood–

brain barrier (BBB) or through axonal transport from the
periphery. The host systemic adaptive and CNS innate
immune systems express pattern-recognition receptors
(PRRs) (endosomal Toll-like receptors (TLRs), cyto-
plasmic retinoic acid-inducible gene 1 (RIG-1), and
melanoma differentiation-associated gene 5 (MDA-5)),
which detect viral nucleic acids and initiate host antiviral
responses. MDA-5 is a crucial factor for EV71 RNA-
activated type I IFN expression [55]. However, EV71 in-
hibits the type I IFN response mediated by RIG-1 and
TLR3, and this process involves the 3C viral protease that
cleaves interferon regulatory factor 7 (IRF7) [56-58]. In
addition, EV71 viral 3C protease inhibits the host cell anti-
virus type I IFN response promoting virus replication in
mice [59].
Roles of microRNAs in the interaction network between
virus and host
In addition to host proteins and viral genome diversity,
some small RNAs have been reported to be involved in
regulating viral replication and translation in viral life cy-
cles [60-63]. MicroRNAs (miRNAs) are a recently discov-
ered class of RNAs with the function of posttranscriptional
gene expression regulation. It has been demonstrated that
miRNAs play crucial roles in the complex interaction net-
work between a virus and a host [64]. miRNA expression is
tissue dependent and the abundance of a particular miRNA
might present a clue regarding whether it functions in the
tissue [65]. Group B coxsackieviruses (CVBs) are the hu-
man enterovirus B species of the Picornaviridae family.
They are divided into 6 serotypes (CVB1-6) and are the
major pathogens of human viral myocarditis that can lead
to dilated cardiomyopathy and cardiac failure [66]. Zhong’s
group determined that miR-342-5p could suppress CVB3
biogenesis by targeting its 2C-coding sequence [67]. They
also observed that miR-10a* upregulated CVB3 biosyn-
thesis by targeting the 3D-coding sequence. MiR10a* was
detectable in the cardiac tissue of suckling Balb/c mice,
suggesting that miR10a* might affect CVB3 replication dur-
ing its cardiac infection [61].

Conclusion
During viral life cycle, enteroviruses use viral factors
and multiple host factors to mediate crucial reactions
during their life cycle, including receptor binding,
IRES-mediated translation, viral RNA replication, and
viral assembly. However, tissue-specific viral virulence
remains unclear from cell-based system to animal
model, and requires further investigation in the future.
Small RNAs encoded by viruses or hosts might play
vital roles in complex signaling pathways of the virus-
host interaction network; this is also a critical process
requiring further investigation.
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