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Ceftriaxone attenuates hypoxic-ischemic brain
injury in neonatal rats
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Abstract

Background: Perinatal brain injury is the leading cause of subsequent neurological disability in both term and
preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic
encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate
transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes
may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert
neuroprotective effect in HIE.

Methods: We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to
8% oxygen for 2 hrs on postnatal day 7 (P7) rats. Neonatal rats were administered three dosages of an antibiotic,
ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections
from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression
was evaluated by Western blot and immunohistochemistry.

Results: Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells
in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia
induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of
ceftriaxone treated rats.

Conclusion: These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce
subsequent brain injury.
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Background
Perinatal hypoxia and ischemia cause serious complica-
tions [1]. Preterm and sick infants are at high risk for
brain injury and neurodevelopmental problems [2]. The
hypoxia and ischemia induced brain injury in neonates
is defined as hypoxic-ischemic encephalopathy (HIE)
which is the leading cause of neurological sequelae in
premature infants. The pathophysiology of HIE includes
energy failure, intracellular calcium accumulation, gluta-
mate and nitric oxide neurotoxicity, lipid peroxidation,
free radical formation, and inflammation [3,4]. As the
survival rate of premature infants increased since 1990s,
increased risk of significant neurodevelopmental

impairment was also noted [5]. Intervention strategies to
HIE include hypothermia and erythropoietin therapy,
which reduce neurological damage in animal models of
HIE [3]. In recent human studies, therapeutic hypother-
mia demonstrated a significant reduction of the risk of
death and neurological impairment at 18 months of age
[6]. But, there was no significant difference in the severe
neurodevelopmental delay in the survivors. Further stu-
dies are warranted to improve the neurological sequelae
after HIE damage.
Five subtypes of glutamate transporter (excitatory

amino acid transporters; EAAT 1-5) have been charac-
terized in human. In other mammalian species, GLAST,
GLT1, and EAAC1 have been found to correspond to
human EAAT1, 2, and 3, respectively [7]. The glutamate
transporters are responsible for the rapid removal of
glutamate from the extracellular space [8]. GLT1 (or
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EAAT2), expressed mainly in the glial cells, plays a prin-
cipal role in removing the excessive glutamate from the
extracellular space [9,10]. Some pathological conditions
have been associated with alteration in EAAT2 expres-
sion, such as amyotrophic lateral sclerosis [11], Alzhei-
mer’s disease [12], and Huntington disease [13].
Interventions targeting on the glutamate transporter
have been conducted [14,15]. Several antibiotics were
found to upregulate significantly GLT1 expression. Cef-
triaxone, a third generation cephalosporin, was one of
the antibiotics found to exert neuroprotection by
increasing GLT1 expression in an animal model of
amyotrophic lateral sclerosis [14]. Ceftriaxone also
exhibited beneficial effects in in vitro and in vivo model
of stroke [16,17]. However, there is no report investigat-
ing the effects of ceftriaxone in neonatal HIE.
In this study, we used a rodent model of neonatal HIE

with unilateral carotid artery ligation and subsequent
exposure to 8% oxygen for 2 hrs on postnatal day 7 rats
(the day of birth was designated as P0). The P7 neonatal
rat is comparable to the 34 weeks old human fetus [18].
Different dosages of ceftriaxone were used in these rat
pups to clarify if ceftriaxone treatment could offer neu-
roprotection against the hypoxic-ischemic brain injury.
Our results indicate that pretreatment with ceftriaxone
in neonatal rats can reverse hypoxic-ischemic induced
morphological and functional alterations.

Methods
Animals
This study was approved by the Institutional Animal
Care and Use Committee of Tzu Chi University. Preg-
nant Sprague-Dawley (SD) rats were housed in indivi-
dual cages with 12 hrs light/dark cycle at 22 ± 2°C with
free access to food and water. After normal delivery, the
size of the litter was adjusted to 10 male rat pups to
eliminate the gender difference of neonatal HIE [19].

Neonatal rat model of hypoxic-ischemic encephalopathy
and treatment design
The neonatal rat model of HIE as described previously
[20] was followed with minor modifications. Briefly, a
less than 1 cm longitudinal midline incision of the neck
was performed under ether anesthesia on P7 rats. The
left carotid artery was exposed and permanently ligated
with 4-0 surgical silk. The surgery lasted less than 5
min. Animals with excessive bleeding were excluded.
The rat pups were returned to home cage with their
dam for 1 hr followed by exposure to hypoxia (92% N2

+ 8% O2) for 2 hrs by placing them in an airtight cham-
ber partially submersed in a 37°C water bath. At the end
of 2 hrs hypoxia, the pups were returned to their dam
again for recovery.

Ceftriaxone (Sigma Chemical Co, St. Louis, MO) was
dissolved in sterile water and dosage of 50, 100 or 200
mg/kg was given intraperitoneally to three different
groups of randomly assigned rats. Rats were pre-treated
daily with ceftriaxone for 2 days followed by a third
dose given 1 hr before ligation and hypoxia. These ani-
mals were assigned to the drug treatment group. Ani-
mals in the control or normal group were treated with
the same volume of saline. Similar to previous report
[20], the control animals received sham operation that
consisted of left carotid artery exposure without ligation
and then exposed to hypoxia for 2 hrs.

Brain tissue preparation
Rats were administered intraperitoneally an overdose of
10% chloral hydrate on P14, and perfused transcardially
with 20 ml ice-cold saline followed by 20 ml 4% parafor-
maldehyde in 0.1 M phosphate buffer (pH 7.4). Brains
were removed and fixed in 4% paraformaldehyde in 0.1
M phosphate buffer overnight at 4°, transferred sequen-
tially to 15% sucrose and then 30% sucrose in 0.1 M
phosphate buffer until the brains sank for cryoprotection.
Brains were then embedded in O.C.T (Sakura, Torrance,
CA) and stored at -80°C for immunohistochemistry and
immunofluorescence studies. The brains were sectioned
coronally into 10 μm slices with a cryostat (Leica
CM3050, Leica Instruments, Nussloch, Germany) at -20°
C to -22°C. Brain sections were mounted onto superfrost
plus slides (Menzel Gläser, Braunschweig, Germany) and
stored at -20°C until use.

Nissl stain and brain injury score
Coronal brain sections corresponding to plate 18 and 31
according to the rat brain atlas [21] were examined. The
selected brain sections were stained with 0.5% cresyl
violet acetate (Sigma, #C1791). We used a standard his-
tological scoring system for evaluating the rodent model
of HIE [22]. Brain sections were scored according to: 0
= no detectable lesion, 1 = small focal area of neuronal
cell loss, 2 = columnar damage in the cortex involving
the layers II-IV or moderate neuronal cell loss, and 3 =
cystic infarction and gliosis. Eight brain regions (hippo-
campus: CA1, CA2, CA3, dentate gyrus; anterior and
middle regions of cortex; striatum and thalamus) were
evaluated, scored, and the scores summed to yield the
final scores, ranging from 0 to 24 for each animal.

Immunohistochemical staining
Conventional procedures were followed with some modi-
fications. Briefly, brain sections were rehydrated with
decreasing ethanol concentrations (100%, 95%, 75%, 50%)
for 5 min each and washed with phosphate-buffered sal-
ine (PBS). Background staining was blocked using protein
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block (NovoLink™ Polymer Detection System, Novocas-
tra, Newcastle Upon Tyne, UK). After washing with PBS,
sections were incubated with primary antibodies with the
following dilution ratio: anti-MBP (1:200, sc-13914, Santa
Cruz Biotechnology Inc., Santa Cruz, CA), and anti-
EAAT 2 (1:100, #3838s, Cell Signaling Technology, Dan-
vers, MA). Sections were treated for 2 hrs at room tem-
perature with horseradish peroxidase-conjugated
secondary antibodies (1:1000, sc-2352, Santa Cruz) for
MBP (myelin basic protein), or incubated with Novo-
Link™ Polymer for 30 min for EAAT2. Substrate 3, 3’-
diaminobenzidine (DAB, Dako, Denmark) was added for
less than 5 min. Slides were examined with a computer-
assisted Olympus BX51 microscope and images were
taken with an Olympus DP72 microscope digital camera.

Neurobehavioral tests
Cliff avoidance test
Cliff avoidance test was performed on P14 rats for asses-
sing the integrity of exteroceptive input and locomotor
output [23]. Rats were placed in the edge of a platform
(30 cm × 30 cm × 30 cm) with forepaws and chest
extending over the edge. The latency of the rats to turn
away or withdraw from the edge was recorded. If the
pups fell from the platform or did not response within
60 seconds, the latency was recorded as 60 seconds.
Negative geotaxis test
Negative geotaxis test examines the sensorimotor func-
tion of neonatal rats [24]. The P14 rat pups were placed
on a 30-degree inclined plate with rough surface. Their
heads were facing downward. The latency to turned 180
degree to an upward direction was recorded. The maxi-
mum duration of recording was 90 seconds.
Rotarod performance test
The rotarod test was used for evaluating the motor and
coordination performance in animals [24]. The test was
performed on P21 rats with the rolling rate of 5 rpm.
Rats were placed on the rod and observed for 3 min.
The duration of rats holding on the rod without falling
down was recorded as the day one trial. On the follow-
ing day P22, rats were placed on the rod again with the
rolling rate of 5 rpm. The duration of holding on the
rod was recorded.
Step-down passive avoidance test
Step-down passive avoidance test was used to measure
the learning and memories in animals [23]. Rats were
place in a 30 cm × 30 cm × 30 cm black acrylic cham-
ber. The floor was made of paralleled 2 mm in diameter
and 1 cm apart from each other stainless steel rods. The
floor of steel rods was connected to an electric shock
generator. At the center of the floor, an acrylic board
(15 cm × 15 cm × 2.5 cm) was placed and served as a
safe platform on the floor. In session one, each animal
(P23) was placed initially on the safe acrylic board.

When rats stepped down to the metal rods, they
received an electrical foot shock (1sec, 0.5 mA). Rats
stepped down and up on the safe board, and the latency
of stepping down till the rats stayed on the board for 2
min were recorded. Session two (P24) was conducted
one day later. Rats were placed on the safe board and
the latency of each animal stayed on the safe board
before starting to step down to the metal rods was
recorded as retention time. If the animal stayed on the
safe board without stepping down to the metal rods, the
latency is recorded as 2 min. Following the latency of
staying on safe board, the duration of stepping down till
the animal again stayed on the board for 2 min was
recorded. If the animal stayed still on the safe board
after placing on the safe board for more than 5 min, the
duration of stepping down was recorded as zero.

Western blot
Conventional methodologies were used. Particulate frac-
tions from P7 brain homogenates were solubilized with
protein extraction solution (PRO-PREP™ protein extrac-
tion solution, iNtRON Biotechnology Inc., Seoul, Korea).
After 30 min incubation, the sample was centrifuged at
13,000 rpm (Allegra™ 21R centrifuge, Beckman Coulter,
Palo Alto, CA) at 4°C for 10 min. The supernatant con-
sisted of the solubilized membrane portion of tissue.
Primary antibody, anti-EAAT2 (1:1000, #3838s, Cell

Signaling Technology Inc., Danvers, MA), was used.
Expression of a-tubulin (1:2000, sc-8035, Santa Cruz)
was used as internal standard. Immunocomplexes were
observed with enhanced chemiluminescent detection.

TUNEL assay
P14 post HIE rat brain tissue was evaluated with in situ
apoptosis detection kit (NeuroTACS™ II; R&D Systems,
Minneapolis, MN) as recommended by the manufac-
turer. Brain sections corresponding to plates 31 of the
rat brain atlas [21] were chosen for evaluating the hip-
pocampal neuronal apoptosis. Hippocampus (CA1, CA2
and CA3) ipsilateral to carotid artery ligation was exam-
ined and the number of apoptotic cells was calculated
under 200X light microscope. TUNEL positive cells
were counted in 3 separate fields of CA1, CA2 and CA3
areas and summated for each animal.

Image analysis and statistical analysis
Image J of NIH was used for densitometric analysis of
Western blots and MBP expression density in the exter-
nal capsule between ipsi- and contra-lateral sides to the
carotid ligation. All data were expressed as mean ± stan-
dard error of mean (SEM). Statistical comparison
between groups was carried out using one way ANOVA
or Student’s t test. A p value of less than 0.05 was con-
sidered statistically significant.
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Results
Ceftriaxone protected against hypoxic-ischemic brain
injury in neonatal rats
Figure 1 shows the Nissl staining of coronal brain sec-
tions from P14 rat after left carotid artery ligation and
subsequent exposure to 8% oxygen for 2 hrs on P7.
Panels A to D show representative brain injury score
increasing from 0 to 3. Brain injury score was signifi-
cantly and dose-dependently attenuated by pre-treat-
ment with 3 different dosages of ceftriaxone 48 hrs
prior to hypoxia-ischemia challenge (Figure 1E). Cef-
triaxone at 200 mg/kg almost completely reversed the
hypoxia-ischemia induced brain damage.

Ceftriaxone attenuated hypoxic-ischemic white matter
injury in neonatal rats
White matter damage was also observed in this rodent
model of hypoxic-ischemic brain injury. The white mat-
ter injuries included delayed pre-oliogodendrocytes
maturation, loss of MBP, white matter cell death, and
gliosis [25]. Figure 2 shows the result of MBP immu-
nostaining from P14 rat brain. The inset in panel A

shows the Nissl stain of external capsule region exam-
ined for MBP staining following ipsilateral ligation, and
the enlarged photographs of MBP staining were shown
from panel B to F. Large extent of MBP loss was
observed in the P14 rat brain ipsilateral to the carotid
ligation (panel C). Pre-treatment with ceftriaxone atte-
nuated the MBP loss of P14 rats in a dose-dependent
manner (panel D-F) with the highest ceftriaxone dose
(200 mg/kg) almost completely rescued the white mat-
ter injury (panel F vs. panel B). The relative density of
MBP in the ischemic-hypoxic side was calculated as the
ratio of the MBP staining level in the ipsilateral side
divided by that of the contralateral side of the same tis-
sue section. Figure 2G shows quantitatively that pre-
treatment with ceftriaxone significantly attenuated the
MBP loss in P14 rats.

Ceftriaxone reduced hypoxic-ischemic cell damage in the
hippocampus
TUNEL assay was performed in coronal brain slices of
P14 rats. Hippocampal cell loss was noted after HIE
(Figure 3B). The HIE induced hippocampal cell damage

Figure 1 Ceftriaxone protected against hypoxic-ischemic brain injury in neonatal rats. A-D, Nissl stains of coronal brain sections from rat
sacrificed on P14 after left carotid artery ligation and subsequent two-hour hypoxia on P7. Panel A, B, C and D represents two coronal brain
sections illustrating the brain injury score of 0, 1, 2, and 3, respectively. E, Pre-treatment with ceftriaxone dose-dependently reduced brain injury
scores and ceftriaxone with dosage 200 mg/kg significantly reduced the hypoxic-ischemic brain injury. one-way ANOVA, p = 0.0016 (n = 5 in
each group); *: p < 0.05. Sham denotes animals received left carotid artery exposure without ligation and followed by 2 hrs of hypoxic challenge.
Saline refers to hypoxic-ischemic animals received saline injection.
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included both necrosis and apoptotic cell damage [26].
TUNEL assay was evaluated under 200X light micro-
scope in 3 fields each of hippocampal CA1, CA2 and
CA3 area, which were summed for each animal. Figure
3C demonstrates that pre-treatment with ceftriaxone
reduced the TUNEL positive cells in hippocampal area
in a dose-dependent manner with statistical significance
found for 100 and 200 mg/kg dosages.

Ceftriaxone improved learning and memory performance
in rats exposed to HIE
Based on the above morphological observations that pre-
treatment with 3 dosages of ceftriaxone reversed the
brain damage caused by ischemic-hypoxic insult, this
treatment protocol was followed to evaluate its effects on
several behavioral tests reflecting motor, learning, and
memory functions. Figure 4 shows that ceftriaxone was
without effect on cliff avoidance on P14 (Figure 4A),
negative geotaxis on P14 (Figure 4B), rotarod test on P21
and P22 (Figure 4C and 4D) or the first session of step-
down passive avoidance on P23 rats (Figure 4E). How-
ever, in session two trial of step-down passive avoidance
(P24 rats), pre-treatment with ceftriaxone significantly
reduced the duration of foot shock (Figure 4G).

Ceftriaxone did not alter GLT1 protein expression in rat
brain homogenate
After pre-treatment with different dosages (50, 100 or
200 mg/kg) of ceftriaxone or saline, the membrane por-
tion of P7 rat brain lysate was used for measuring the

Figure 2 Ceftriaxone attenuated hypoxic-ischemic white matter
injury in neonatal rats. A, the rectangular inset indicated the area
of analysis. B-F, immunohistochemical staining of myelin basic
protein (MBP) in external capsule of left coronal brain sections from
P14 rats. (B: sham operation, C: saline. D: ceftriaxone 50 mg/kg, E:
ceftriaxone 100 mg/kg, F: ceftriaxone 200 mg/kg). scale bar = 100
μm. G, Ratio of MBP density (ipsilateral/contralateral) showed
significant reduction in saline treated group. Ceftriaxone treatment
dose-dependently attenuated the MBP loss and pre-treatment with
ceftriaxone 200 mg/kg showed statistically significant rescue of MBP
loss compared to saline group. one-way ANOVA, p = 0.0001 (n = 5
in each group); *: p < 0.05. The definitions for sham and saline
groups are the same as those in Figure 1.

Figure 3 Ceftriaxone reduced hypoxic-ischemic cell damage in
the hippocampus. A, B, in situ cell death detection by TUNEL
reaction in hippocampus of P14 rat brains counter-stained with
hematoxylin. (A: ceftriaxone 200 mg/kg, B: saline, scale bar = 200
μm). C, the brains were evaluated under 200X light microscope in 3
separate fields each of CA1, CA2, and CA3 (total 9 fields) and
summed for each animal. Pre-treatment with 100 mg/kg and 200
mg/kg ceftriaxone significantly reduced the TUNEL positive cell.
one-way ANOVA, p = 0.0017 (n = 5 in each group); *: p < 0.05.
Saline group refers to animals received hypoxic-ischemic procedures
and saline administration.
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expression of GLT1 protein. A representative immuno-
blotting is demonstrated in Figure 5A. The expression
of GLT1 was not altered by pre-treatment with ceftriax-
one (Figure 5B).

Ceftriaxone induced the expression of GLT1 in the
cortical neurons of neonatal rat brain
We further examined if there was regional difference in
the expression of GLT1 protein that could explain at

least partly the neuroprotection mediated by ceftriaxone
administration. Pre-treatment with 3 dosages of 200
mg/kg ceftriaxone was followed since it significantly
reduced the histological and behavioral deficits. Immu-
nohistochemial study with anti-EAAT2 antibody was
carried out in brain slides to reveal the regional differ-
ence of GLT1 expression between ceftriaxone treated
and saline group. Figure 6 demonstrates immunohisto-
chemical staining of GLT1 in saline and ceftriaxone
treatment groups. Each panel showed different regions
of brain section (A,E: corpus callosum; B,F: cerebral cor-
tex; C,G: hippocampus and D,H: striatum). Figure 6B
shows that cerebral cortex from control P7 brain
expressed little GLT1 protein. Figure 6F demonstrates
that ceftriaxone pre-treatment, however, induced GLT1
protein expression in this area. After counterstained
with Nissl stain, the GLT1 protein was found to be
expressed in cortical neuronal cells (Figure 7B arrow).
Image J was used to analyze the percentage of EAAT2
(GLT1) immunoreactive area of P7 rat cortex under

Figure 4 Ceftriaxone improved performance of step-down
passive avoidance test. A: cliff avoidance test, B: negative geotaxis
test, C: rotarod test with 5 rpm on P21, D: rotarod test with 5 rpm
on P22, E: step-down passive avoidance test session one on P23, F,
G: step-down passive avoidance test session two on P24. F:
Significant reduction of retention time was observed in saline group
compared to sham group. Ceftriaxone treatment improved the
duration of rats stayed on safe board in step-down passive
avoidance test without statistical significance. G: Ceftriaxone
significantly reduced the foot shock duration after HIE injury.
(Abbreviation: NS: saline group, animals received hypoxic-ischemic
procedures and given saline injection, CTX: ceftriaxone 200 mg/kg
group, Sham: sham operated group) *: p < 0.05, Student’s t test. (n
= 10 in each group)

Figure 5 Pre-treatment with ceftriaxone did not increase GLT1
protein expression in neonatal rat brain tissue. A, GLT1 protein
expression in P7 rat brain tissue following pre-treatment with
different dosages of ceftriaxone and saline; B, statistic analysis
showed no difference in GLT1 protein expression among these
groups. one-way ANOVA, p = 0.95 (n = 5 in each group). Saline
group, animals received hypoxic-ischemic procedures and given
saline injection.
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400X light microscope in saline and ceftriaxone pre-
treated groups. Ceftriaxone pre-treatment significantly
induced GLT1 protein expression in cortical neuron
(Figure 7, P = 0.031).

Discussion
In this study, we showed that neonatal ischemic-hypoxic
brain damage can be attenuated by pre-treatment with

ceftriaxone. Our data are consistent with similar
approaches reported in the literature [27]. However, the
present study is the first to investigate the utility of cef-
triaxone in a neonatal rat model of ischemic-hypoxic
brain damage. Since ceftriaxone is a FDA approved drug
and exhibits relatively few adverse effects, the potential
clinical benefit of ceftriaxone and related antibiotics in
human neonatal HIE warrants further investigation.

Figure 6 Regional difference of GLT1 protein in neonatal rats among ceftriaxone treated and saline groups. Immunohistochemical
staining of GLT1 in saline and ceftriaxone treated groups in P7 rat brain. (ceftriaxone: pre-treatment with 3 dosages of 200 mg/kg ceftriaxone,
saline: pre-treatment with 3 dosages of saline). A, E: corpus callosum. B, F: cerebral cortex. C, G: hippocampus. D, H: striatum. Increased GLT1
protein expression in cerebral cortex was noted in ceftriaxone group compared to saline group. There was no significant difference in GLT1
expression in corpus callosum, hippocampus and striatum. Scale bar = 100 μm.
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For the pathophysiology of neonatal HIE, glutamate
neurotoxicity remains an important issue in subsequent
calcium influx, free radical formation, necrosis, and
apoptosis [28]. During brain development, glutamate
plays an important role in oligodendrocyte maturation
and myelination, but can lead to detrimental conse-
quences from excessive release after HIE [29,30]. The
blockade of glutamate receptor by antagonists improved
white matter injury [25,31,32]. Experimental drugs that
block NMDA-type glutamate receptor could protect the
brain from severe hypoxic-ischemic insults if given
before or shortly after the insult, but were ineffective if
administration was delayed for more than several hrs
[33-36]. These data suggest that downstream events
quickly become self-sustaining after neonatal HIE [28].
An alternative approach to reduce glutamate neuro-

toxicity is to augment the glutamate reuptake. GLT1
glutamate transporter plays a major role in the reuptake
of extracellular glutamate and is expressed mainly in
mature astrocytes although minor expression has been
found in neurons, microglias, and oligodendrocytes. But,
astrocytes in immature human or rat brain do not
express EAAT2 or GLT1 [37-40]. GLT1 expression is
very low in the early postnatal period and reaches adult

levels in hippocampus at 3-4 weeks old in rat brain tis-
sue and hippocampus [16,40,41]. The roles of GLT1 in
immature brain remained unclear. In human premature
infant, expression of EAAT2 was observed in pre-oligo-
dendrocytes which might be the cause of white matter
vulnerability to HIE injury. Upregulation of EAAT2 (or
GLT1) was observed in reactive astrocytes and macro-
phages in the area of periventricular leukomalacia (PVL)
[38,39]. In a rat model of neonatal HIE, altered expres-
sion of glutamate transporter and decreased GLT1
expression were observed in the area of ischemic core
[42]. Prolonged hypoxia reduced GLT1 expression in
astrocytes resulting in the accumulation of extracellular
glutamate [43]. Furthermore, functional reversal of glu-
tamate transporter in glial cells occurred during hypoxia
and ischemia also contributed to the excessive extracel-
lular glutamate toxicity [44]. In this study, we used a
FDA approved beta-lactam antibiotic, ceftriaxone. It has
been found that a 5-7 days course of ceftriaxone
increased GLT1 protein expression in organotypic spinal
cord slice cultures, neuronal culture under glucose-oxy-
gen deprivation, human fetal astrocytes culture, and in
the rat brain [14]. These results have been confirmed in
hippocampal slice culture and in rat brains [27,45]. In
contrast, upregulation of GLT1 expression by ceftriax-
one treatment was not observed in a rat stroke model,
in organotypic hippocampal slices or in a mouse model
of multiple sclerosis [16,17,46]. Ceftriaxone may offer
neuroprotection via other mechanisms, such as
increased GLT1 transporter activity, stimulation of neu-
rotrophin release or reduction of T cell activation by
modulation of cellular antigen-presentation [17,46].
In our studies, GLT1 protein expression in the whole

brain lysate of P7 rat did not change after ceftriaxone
treatment. But, immunohistochemical study showed that
pre-treatment with ceftriaxone induced GLT1 protein
expression in cerebral cortex of P7 rat. GLT1 expressed
in neurons of the brain is observed during early stages of
development and is present during axonal growth, which
disappears on maturation [47]. The role of GLT1 in
immature neuron remains to be investigated. In mature
rat brain, neuronal expression of GLT1 protein and
mRNA had also been found and might play a role in the
pathophysiology of excitotoxicity [48-50]. But, in our
study, pretreatment with ceftriaxone increased expression
of GLT1 in the cerebral cortical neuron of P7 rat. Neuro-
nal expression of GLT1 protein was confirmed after
counterstained with Nissl stain. The presence of GLT1 in
neurons might enhance glutamate uptake after hypoxic-
ischemic injury. However, other mechanisms, such as
enhanced GLT activity and/or anti-inflammatory effect
of ceftriaxone, cannot be excluded.
Several behavioral paradigms mimic the childhood

behavior in human were examined in the young rat. No

Figure 7 Pre-treatment with ceftriaxone induced the GLT1
protein expression in cerebral cortical neuron.
Immunohistochemistry staining of GLT1 (DAB: brown) and counter-
staining with Nissl stain (blue) in cerebral cortex of P7 rat. A: pre-
treatment with 3 dosages of saline, B: pre-treatment with 3 dosages
of 200 mg/kg ceftriaxone. Arrow indicated neuronal expression of
GLT1 protein. Scale bar = 20 μm. C: percentage of area of
immunohistochemical staining for GLT1 under 400X light
microscope in saline and ceftriaxone treated groups. (n = 3 in saline
and n = 4 in ceftriaxone group, *: p < 0.05.) Saline group, animals
received hypoxic-ischemic procedures and given saline injection
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difference was detected in the primitive reflexes (cliff
avoidance and negative geotaxis test) and motor func-
tion test among treatment, vehicle, and sham groups.
On the other hand, significant improvement in step-
down passive avoidance test was found after ceftriaxone
treatment. The difference of behavior between HIE
group and normal control group included long-lasting
sensorimotor and locomotor deficits [51]. But, unlike
human, rats exposed to HIE injury did not exhibit gross
motor function deficit in some studies although some
permanent deficit has also been observed [24]. This may
be due to a higher degree of plasticity of neonatal rat
brain compared with that of human brain. Step-down
passive avoidance reflects learning and memory func-
tion. In our studies, ceftriaxone rescued hippocampal
cells from apoptosis which may contribute to improved
step-down passive avoidance results.
Pre-treatment with agents prior to the appearance of

pathological changes remains debatable in clinical appli-
cation. But, in premature baby, pre-treatment may be
acceptable because pregnant mother usually receives
tocolysis for prevention of preterm birth. In addition,
ceftriaxone exhibits antibiotic effect which could elimi-
nate the pathogens if maternal chorioamnionitis is diag-
nosed [52] since ceftriaxone effectively crosses the
placenta [53].

Conclusions
In conclusion, pre-treatment with ceftriaxone for 48 hrs
prior to hypoxic-ischemic brain injury in neonatal rats
reduced brain injury score, improved myelination,
decreased hippocampal apoptotic cell death, and
restored learning and memory deficit. Induction of
GLT1 protein expression in cerebral cortex after cef-
triaxone pre-treatment was observed in P7 rats, which
might partially explain the neuroprotective effect of cef-
triaxone. Ceftriaxone may be an effective therapeutic
agent for the treatment of neonatal HIE.
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