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Abstract

In recent years, a large number of studies have contributed to our understanding of the immunomodulatory
mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM),
MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM
MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and
are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as
possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for
procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and
these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation
as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of
MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of
BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for
prevalent clinical use of these versatile adult stem cells in the near future.
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1. Mesenchymal stem cells: Definition and
functional capacity
Human mesenchymal stem cells (MSCs) are a popula-
tion of multilineage progenitor cells with the ability to
differentiate into multiple mesenchymal lineages such as
chondrocytes, osteoblasts, or adipocytes [1,2]. The initial
isolation of MSCs was from the bone marrow (BM)
based on plastic adherence of the cells as opposed BM
hematopoieitic cells which can be cultured in suspen-
sion [3]. Increasingly, MSCs have been reported to be
isolated from a number of other organs in the adult
[4-7] and fetal-stage tissue [8-13]. Due to the difficulty
in comparing the various methods used to isolate BM
and tissue MSCs, a recent movement to define these
progenitor cells have proposed a minimal criteria for
MSCs in terms of trilineage mesodermal differentiation
capacity and expression of a specific panel of cell surface
marker including being positive for CD73, CD90, and

CD105; and negative for hematopoietic markers such as
CD14 or CD11b, CD34, CD45, and CD19 or CD79a
[14]. The ease of isolation of MSCs along with reports
of differentiation into extra-mesodermal cell types has
made MSCs a popular choice for cell therapy for pre-
clinical and clinical trials of a variety of diseases [15,16].

2. Immunomodulatory Properties of Adult and
Fetal-stage MSCs
One important reason for the abundant number of clini-
cal studies using adult BMMSCs is the immunomodula-
tory properties of these cells [17-20]. As with organ
transplantation, a critical issue in stem cell therapy is the
rejection resulting from immune incompatibility between
donor and recipient. BMMSCs’ immunomodulatory
properties appear to obviate this major obstacle for cell
therapy [21]; moreover, these immunosuppressive effects
allow for an even wider range of disease indications for
these progenitor cells, including use for immune-related
diseases [4,22-26]. BMMSCs appear to be poorly immu-
nogenic [27], since they constitutively express low levels
of major histocompatibility complex (MHC) class I
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molecules and no MHC class II molecules. Moreover,
BMMSCs do not express co-stimulatory molecules such
as CD40, CD80, or CD86 which are involved in the acti-
vation of T cell for transplant rejection [18,28,29]. Several
studies show that differentiated and undifferentiated
BMMSCs have suppressive effects on alloantigen- and
mitogen-stimulated lymphocyte proliferation in in vitro
studies using mixed lymphocyte reactions (MLR), with a
concomitant reduction in the production of proinflam-
matory cytokines such as interferon-g (IFN-g) and tumor
necrosis factor-a (TNF-a)[17,18,30]. Thus, the clinical
indications for human BMMSCs are considerably wider
than other human stem cells, ranging from cell replace-
ment for degenerative diseases–common indications for
stem cell therapy–as well as immune-related diseases
including autoimmune diseases and transplantation
rejection [4,22-26].
While the differentiation plasticity and immunomodu-

latory properties of adult BMMSCs have brought much
excitement in terms of prevalent clinical use for these
progenitor cells, the fact remains that these cells are very
rare, with cell numbers and proliferative capacity further
decreasing with age [31,32]. In addition, an invasive pro-
cedure in terms of BM aspiration is needed to obtain
BMMSCs. Thus, investigators have worked to identify
other abundant and easily attainable sources of MSCs for
therapeutic use. While many other adult tissues appear
to harbor MSCs as well [4], the problems of requiring
invasive procedures to obtain these relatively rare cells
remain. A number of labs have thus turned to using dis-
carded post-partum fetal-stage tissue for isolation of pro-
genitor cells, since fetal umbilical cord blood is known to
be a good source for the hematopoietic stem cell, one
type of highly used stem cells. Known to be important in
mediating the fetomaternal tolerance of pregnancy, fetal-
stage extra-embryonic tissues are easily accessible
sources for isolation of cells since these tissues are
discarded at birth, obviating ethical issues as well.
Fetal MSCs (F-MSCs) have been derived from a num-

ber of fetal tissues, including fetal liver and bone marrow
[13]. Moreover, extra-embryonic structures of fetal origin
are also good sources for MSCs since they are discarded
after birth, and MSCs isolated from human umbilical
cord blood (UCB)(hUCB-MSCs)[9,33], the Wharton’s
Jelly (hWJ-MSCs) of the umbilical cord itself [34], amnio-
tic fluid (AF)(hAF-MSCs)[10,35], amnion (hA-MSCs)
[36], and the placenta (hP-MSCs)[8,37-39] have been
demonstrated. These increasing reports on the isolation
of MSCs from all these fetal-stage tissues demonstrate
that F-MSCs can be an abundant and viable source of
MSCs.
In addition to multilineage differentiation capacity,

F-MSCs have been demonstrated to harbor strong
immunomodulatory effects as well. F-MSCs lack or

exhibit very low expression of highly polymorphic MHC
class I (HLA-A, HLA-B, and HLA-C); furthermore, they
do not express surface MHC class II molecules (HLA-
DP, HLA-DQ, and HLA-DR) nor co-stimulatory mole-
cules, such as CD40, CD40 ligand, CD80, and CD86
[10,34,35,40-52]. F-MSCs not only fail to induce an allo-
geneic or xenogeneic immune response in MLR, but
also strongly suppress lymphocyte proliferation induced
by mitogens or alloantigens, often in a dose-dependent
manner [53-57]. Based on these data, F-MSCs appear to
be as least as non-immunogenic as BMMSCs, and in
some reports, appear to be even more immunomodula-
tory than its adult counterpart [40]. This is supported
by clinical experience in hematopoietic stem cell trans-
plantation (HSCT), where lower incidences of immune-
related consequences are consistently seen after UCB
HSCT compared to BM HSCT [21].
Based on the accumulating data, it appears that both

adult-source MSCs–most prominently BMMSCS–and
F-MSCs are good candidates for cell therapy for
immune-related diseases in addition to degenerative dis-
eases. In general, the overwhelming majority of the data
is based on studies with BMMSCs rather than F-MSCs,
since F-MSCs are newer sources of MSCs and have been
studied only in the past few years. This review focuses on
evidence for the immunomodulation of adult BMMSCs
and F-MSCs, properties which appear increasingly rele-
vant for clinical use. Interactions of BMMSCs and
F-MSCs with subpopulations of leukocytes, and mechan-
isms of actions–when investigated–are reviewed.

3. Interactions of human BMMSCs and F-MSCs
with leukocyte subpopulations
3.1 Interactions with T Lymphocytes
Currently, the interactions of MSCs with T lymphocytes
are the best studied. Many reports have shown that
BMMSCs affect several properties of T cells, most promi-
nently efficiently suppressing activated CD4+ T helper
cell and CD8+ cytotoxic T cell (CTL) proliferation
[19,29,58-60]. Activated T cells are arrested by BMMSCs
in the G0/G1 phase of the cell cycle [61], but apoptosis is
not induced [19,29]. Besides their ability to impair the
proliferation of activated T cells, BMMSCs can prolong
the survival of unstimulated T cells by rescuing the lym-
phocytes from activation-induced cell death by down-
regulation of Fas receptor and Fas ligand on T cells and
inhibition of endogenous proteases involved in cell death
[62]. Further studies have shown that BMMSCs reduce
IFN-g production by CD4+ Th1 cells and interleukin
(IL)-17 release by CD4+ Th17 lymphocytes, whereas IL-4
secretion by CD4+ Th2 cells is augmented [58,63-66].
The cytolytic potential of CTLs can also be efficiently
impaired by BMMSCs [67]. Recently, several studies
investigated the impact of BMMSCs on T regulatory
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lymphocytes (Tregs), a population of CD4+ CD25high

cells which play an important role in the induction of
peripheral tolerance and the inhibition of proinflamma-
tory immune responses [68-70]. Many studies have
shown that BMMSCs cultured with stimulated peripheral
blood mononuclear cells (PBMCs) can induce the expan-
sion of functional CD4+ CD25high Foxp3+ Tregs
[58,66,67,71-75]. A number of mechanisms have been
suggested–both cell-contact dependent and independent
mechanisms–but there is no clear consensus as of yet;
for example, transforming growth factor-b (TGF-b) has
been cited as being involved in one study [71] but not in
another study [72]. This discrepancy may be due to the
subtle phenotypic variations induced in BMMSCs by the
many methods available for isolation of these adult stem
cells.
Several studies have attempted to delineate which spe-

cific molecules are involved in the immunomodulatory
effect of BMMSCs on T-cell proliferation and effector
functions. In the human system, the effects of BMMSCs
on T cells are mainly mediated through cell-contact
independent processes, implicating the importance of
secreted factors [76]. These molecules include IL-1b
[77], TGF-b1 [19,71,77], hepatocyte growth factor
(HGF)[19], prostaglandin E2 (PGE2)[58,71,78,79], indo-
leamine 2,3-dioxygenase (IDO)[59,79-81], heme oxyge-
nase-1 (HO-1)[82], leukemia inhibitory factor (LIF)[83],
insulin-like growth factor (IGF)[84], soluble human leu-
kocyte antigen G5 (sHLA-G5)[74,85], galectin [86,87],
and Jagged-1 [88]. Most of the inhibitory soluble factors
are not constitutively secreted, but can be induced by
the interaction between activated effector cells and
BMMSCs (Table 1).
F-MSCs also have been reported to have strong inhibi-

tory effects on T lymphocytes. hWJ-MSCs display
potent immunosuppressive properties on T cell activa-
tion in an antigen-independent manner [51], and can
also suppress the proliferation of mitogen-stimulated rat
splenocytes (xenograft model) or human PBMCs (allo-
geneic transplant model) in allogeneic MLR in vitro
[51]. Furthermore, CD14+ monocytes promote the
immunosuppressive effect of hWJ-MSCs probably via
the IL-1b-PGE2 axis. The inflammatory cytokine IL-1b
produced by hPBMCs upon activation upregulates the
expression of cyclooxygenase-2 (COX-2) and the pro-
duction of PGE2 by hWJ-MSCs [89-92]. hP-MSCs can
also suppress the proliferation of allogeneic T cells
[40,53,93]. These effects of hP-MSCs may involve the
secretion of soluble factors TGF-b and IL-10 [40,94].
Both hP-MSCs and hUCB-MSCs have been shown to
increase the proportion of Tregs, which contributes to
the suppression of T cell proliferation [40,42](Figure 1).
Interestingly, a number of reports have demonstrated

that in in vitro systems, pretreatment of BMMSCs and

F-MSCs with the pro-inflammatory cytokine IFN-g actu-
ally enhances their immunomodulation rather than
decreases it [40,59,95]. Some investigators have postu-
lated that this may explain the in vivo ability of MSCs
to be effective against very inflammatory diseases such
as graft-versus-host-disease (GVHD), in which the pro-
duction of such activating cytokines as IFN-g by T and
natural killer lymphocytes (NKs) may actually promote
MSC immunomodulation, subsequently suppressing the
proliferation of CD4+, CD8+ T cells, and NKs them-
selves [59]. While this has not been proven in animal
studies, pre-clinical and clinical data continues to reveal
therapeutic efficacy after MSC administration, giving
indirect evidence for this hypothesis. Interestingly, while
IFN-g pre-treatment of adult BMMSCs results in induc-
tion of IDO, a strong immunosuppressive enzyme
[59,80], MHC II molecules–which can elicit inflamma-
tory responses [96]–are induced as well [12,40], but this
does not appear to change the immunomodulatory
effects of BMMSCs. It would be critical to elucidate this
paradox to better understand why these progenitors
possess such strong immunomodulatory properties
inherently.

3.2 Interactions with Dendritic Cells (DCs)
DCs are derived from monocytes and are potent antigen-
presenting cells (APCs) that act by internalizing, shut-
tling, and presenting antigens to naïve T-cells, which
then leads to T-cell activation. These key regulators of
immunity display an extraordinary capacity to induce
T cell responses and secrete a variety of cytokines; the
differentiation status of DCs can influence whether its
target lymphocyte–often T cells–will mount an effector
versus a more immunomodulatory response [97]. As
such, studies have shown that BMMSCs inhibit the
immunostimulatory capacity of DCs, supporting the
development of a more tolerogenic population of DCs
[93,98,99]. BMMSCs markedly impair PBMCs differen-
tiation into DCs and inhibit endocytosis and the produc-
tion of IL-12 by DCs. In the presence of BMMSCs, the
differentiation of CD14+ monocytes into DCs is impaired,
and the monocytes retain high expression of CD14+–a
marker of immaturity for DCs–without the upregulation
of CD1a, HLA-DR, or co-stimulatory molecules which
prevent the DCs to efficiently induce T cell effector
responses [98]. In addition, BMMSCs also efficiently sup-
press the T cell-activating functions of DCs, including
stimulation of T-cell proliferation, reduction of naïve
CD4+ T lymphocytes polarizing into proinflammatory
Th1 cells, and promotion of Th2 responses. BMMSCs
can decrease TNF-a secretion by DCs, which then leads
to a reduced number of IFN-g-producing Th1 cells.
APCs generated in the presence of BMMSCs express low
levels of IL-12, TNF-a, and MHC class II and high levels
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of IL-1b and IL-10, regardless of CD86 expression [100].
BMMSCs also induce DCs to secrete IL-10, which favors
IL-4-producing Th2 cells and Tregs [58]. Furthermore,
BMMSCs impair the release of cytokines by activated
DCs through PGE2 [58,99]. Both cell-to-cell contact and
soluble factors such as IL-6 and macrophage-colony-sti-
mulating factor (M-CSF) mediate the BMMSC-mediated
inhibition of differentiation, cytokine production, and T-
cell stimulatory capacity of DCs [98,101] (Table 1).
Interestingly, there are studies which show that

BMMSCs itself can function as non-professional APCs. It
has been reported that IFN-g-stimulated BMMSCs can
present exogenous antigens through upregulation of MHC
class II molecules, which then results in activation of CD4+

T cells [28,102-104]. BMMSCs can also cross-present exo-
genous antigens to induce CD8+ T cell proliferation
[105,106]. A few studies have shown that BMMSCs–similar
to DCs–express high levels of toll-like receptors (TLRs),
including TLR1, TLR3, TLR4, and TLR5. TLRs are recep-
tors primarily expressed on APCs which recognize con-
served pathogen-derived components. Triggering of TLR3,
which binds double-stranded RNA, and TLR4, which binds
lipopolysaccharide (LPS) and innate self antigens, on
BMMSCs has been reported to suppress the immunomo-
dulation of these cells through Notch ⁄ Jagged1 signaling,
leading to production of pro-inflammatory mediators such

as IL-1b, IL-6, and IL-8 [88,107-109]. However, another
report showed that triggering of TLR on BMMSCs actually
induces immunosuppression, which leads to the produc-
tion of immunosuppressive kynurenines induced by IDO1.
IDO1 can be induced by TLR3 and TLR4 signaling and
this involves the activation of protein kinase R (PKR), an
autocrine IFN-b signaling loop, and the activation of signal
transducer and activator of transcription 1 (STAT1)/inter-
feron regulatory factor 1 (IRF-1)[110]. These conflicting
data regarding BMMSCs suppressing DC maturation and
BMMSCs itself being an APC eliciting pro-inflammatory
responses will require more research for clarification. One
possible reason for these discrepant findings is that there is
much heterogeneity between BMMSCs isolated from
laboratory to laboratory. While the recent consensus of cell
surface profile and tri-lineage mesodermal differentiation
requirement has been extremely helpful to unify BMMSC
phenotype [14], there still may exist epigenetic differences
due to organ of origin and donor age, just to name a few
variables. Moreover, the immunomodulatory properties of
MSCs from different organs have not been much investi-
gated, and one comparative study suggests that the MSC
niche is unique in each tissue, which can contributes to
functional differences [111]. Thus, it appears that studying
the immunomodulatory behavior of MSCs derived from
different origins would be important, and the accumulation

Table 1 Human BMMSC-Derived Immunoregulatory Soluble Factors

Leukocyte Effects Soluble Factors References

T cells Inhibition of T-cell proliferation, cytokine secretion and cytotoxicity IL-1b [77]

TGF-b1 [19,71,77]

HGF [19]

PGE2 [58,71,78,79]

IDO [59,79-81]

HO-1 [82]

LIF [83]

IGF [84]

HLA-G5/
other HLA-G

[74,83]

Galectin-1 [87]

Apoptosis of activated T-cells IDO [81]

Generation of CD4+ CD25high Foxp3+ Tregs HLA-G5 [74]

CCL1 (I-309) [75]

LIF [83]

DCs Inhibition of DC maturation M-CSF [98]

NKs Inhibition of NK cell proliferation, cytokine secretion and cytotoxicity TGF-b [118]

IDO [59,119]

HLA-G5 [74]

PGE2 [59,118,119]

Abbreviations: DCs, dendritic cells; NKs, natural killer lymphocytes; Tregs, T regulatory lymphocytes; IL-1b, interleukin-1b; TGF-b1, transforming growth factor-b1;
HGF, hepatocyte growth factor; PGE2, prostaglandin E2; IDO, indoleamine 2,3-dioxygenase; HO-1, heme oxygenase-1; LIF, leukemia inhibitory factor; IGF, insulin-
like growth factor; HLA-G5, human leukocyte antigen G5; CCL1, CC chemokine ligand 1; M-CSF, macrophage-colony-stimulating factor.
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of such data will help to shed more light and clarity on dis-
crepant findings of this field.
Some studies have suggested that F-MSCs are poor

APCs due to their low or limited expression of MHC
class II and co-stimulatory molecules even after IFN-g
stimulation [40,112]. Recent studies have also investi-
gated whether F-MSCs modulate DC phenotype and
function. hAMSCs exert immunomodulatory effects on
APCs, as demonstrated by their capacity to block
maturation of monocytes into DCs [112]. They can pre-
vent the expression of the DC lineage-specific marker
CD1a and reduce the expression of HLA-DR, CD80, and
CD83. This block in the monocyte-DC maturation pro-
cess also results in impaired allostimulatory ability of

these cells on allogeneic T cells [113,114]. Remarkably,
hUCB-MSCs modulate DCs in a different way. hUCB-
MSCs suppress the function of mature DCs by driving
DCs to an intermediate maturation state and boosting
IL-12 production by mature DCs [115]. These inhibitory
mechanisms involve both cell-contact dependent as well
as secretion of soluble factors [50] (Figure 1).

3.3 Interactions with Natural Killer Lymphocytes (NKs)
NKs are key players of the innate immune system and
are important in targeting virus-infected cells and tumor
cells. NKs are highly cytotoxic and secrete large
amounts of proinflammatory cytokines such as TNF-a
and IFN-g [116,117]. Part of the innate immune system,

NKs

1. Proliferation 
2. Cytotoxicity
3. IFN-
4. KIR , NKp30 

F-MSCs

DCs

1. Differentiation
from monocyte

2. Maturation 
3. IL-12 
4. IL-10 
5. TNF- , CXCL10, 

CXCL9, CCL5 
6. Capability to 

induce T cells 

Tregs

1. Proliferation 

T cells

1. Proliferation 
2. Activation 
3. CTL activity 
4. IFN-

HLA-G PGE2

TGF-
IL-10

Figure 1 Immunomodulatory effects of F-MSCs on different immune cells. F-MSCs inhibit proliferation, cytokine secretion, and cytotoxic
potential of NKs and CTLs. They also impair maturation, cytokine production, and T-cell stimulatory capacity of DCs. Moreover, F-MSCs inhibit
the proliferation and cytokine secretion of T cells and promote the expansion of Tregs.
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these cytotoxic lymphocytes are triggered to recognize
and respond to MHC molecules signifying “self” versus
“non-self”, rather than specific antigens which T and B
lymphocytes of the adaptive immune system recognize.
A few studies have shown that BMMSCs are able to
suppress the proliferation and cytokine production of
NKs [58,67,118]. The inhibition requires both cell-to-
cell contact and soluble factors such as PGE2 and TGF-
b [59,118]. BMMSCs can also modulate the cytotoxicity
of NKs, reducing the levels of NK-secreted cytokines
such as IFN-g, IL-10, and TNF-a and this phenomenon
also requires cell-cell contact [118,119]. However, stimu-
lated NKs can efficiently lyse autologous and allogeneic
BMMSCs [118,120,121]. The activating NK receptors
NKp30, NKG2D, and DNAM-1 were involved in NK-
mediated cytotoxicity against BMMSCs. IFN-g-stimu-
lated BMMSCs, on the other hand, were less susceptible
to NK cell lysis as a consequence of the up-regulation of
MHC class I molecules at the MSC surface [121]. More-
over, the secretion of soluble HLA-G (sHLA-G) by
BMMSCs plays an important role in the inhibition of
NK cytotoxicity and IFN-g release [74]. First identified
in choriocarcinoma and migratory trophoblasts, HLA-G
(non-classical MHC I molecule) is thought to confer for
the fetus a protective effect against the maternal
immune system, including directly suppressing maternal
NK cytotoxicity [122]. HLA-G can exist in several
forms, with the best characterized being the complete
transmembrane form (HLA-G1)–the predominant in
vivo form–and one of the three soluble, truncated forms
(HLA-G5 or sHLA-G)[123]. Unlike most MHC I mole-
cules, HLA-G has very low polymorphism and its
expression in the adult is highly restricted; however, in
certain pathologic states including cancer and inflamma-
tory diseases, expression can be induced [124]. The
receptors for HLA-G include ILT-2, ILT-4, and CD94
and these receptors can be found on a number of leuko-
cytes, most prominently being NKs [125](Table 1).
F-MSCs can express surface molecule HLA-G, indicat-

ing potential tolerance-inducing properties [51,126]. We
found that hP-MSCs are more resistant to stimulated-NK
cytotoxicity than BMMSCs; moreover, hP-MSCs demon-
strate enhanced suppressive effects towards NK in the pre-
sence of IFN-g, and this is partially mediated through
surface expression of HLA-G on hP-MSCs but not adult
BMMSCs [127]. The placenta is known to have unique
immunomodulatory interactions with maternal uterine
NKs, which also have a different effector profile than per-
ipheral blood NKs [128,129]. Thus, interactions of
F-MSCs with NKs may be quite different than that found
with BMMSCs, since NKs are one of the most important
and predominant lymphocyte populations found during
pregnancy. While such data is still scarce, research on
F-MSCs interactions with this population of innate

lymphocytes should yield interesting data, and perhaps
even shed light on maternal-fetal immune mechanisms
(Figure 1).

4. Clinical applications of adult and F-MSCs for
GVHD
The majority of data on the immunomodulation of MSCs
are in vitro in nature, however, a number of studies have
been in vivo. One of the potentially lethal consequences
after allogeneic HSCT is GVHD in which recipient cyto-
toxic T cells attack donor tissue, resulting in an immune-
related complication which is associated with high
morbidity and mortality [130]. Animal models of GVHD
are one of the most commonly used disease models to
validate BMMSC immune function in vivo, and these stu-
dies have demonstrated that BMMSCs do remain immu-
nomodulatory in vivo [131-134]. Recent data has shown
that the combination of BMMSCs and immunosuppres-
sive drugs can prolong organ allograft survival [135,136].
Because of the profound immunomodulatory effect of
BMMSCs shown in vitro and in vivo, co-transplantation of
ex vivo-expanded BMMSCs with HSCs for GVHD has
been recommended [22,26,137-145]. In addition, cytokines
released by BMMSCs may promote homing or prolifera-
tion of HSCs and enhance HSCs engraftment [146-151].
Thus, based on the accumulated in vitro and animal stu-
dies, a number of clinical trials have been started to evalu-
ate the potential of BMMSCs for the treatment of GVHD
[22,26,137,140,152].
While there are in general fewer studies using F-MSCs

as a cell therapy source, some pre-clinical studies have
been conducted. Several animal studies show the pro-
longed survival of hAMSCs with no evidence of immuno-
logical rejection after xenogeneic transplantation into
immunocompetent animals including rats [56,153-155]
and swine [56]. Moreover, hAF-MSCs appear to be rela-
tively resistant to rejection by the recipient–even with
allogenic cell transplantation–due to the expression of
immunosuppressive factors such as CD59 (protectin) and
HLA-G [156]. Co-transplantation of UCBHSCs along with
F-MSCs can reduce potential GVHD in recipients [35], as
well as enhance UCB cell engraftment and homing of
CD34+ HSCs [157,158]. Therefore, F-MSCs appear to be a
promising source for stem cell therapy of GVHD and
likely other immune-related diseases.

5. Conclusions
MSCs are multilineage progenitors which can be isolated
from many adult organs as well as fetal-stage tissues.
BMMSCs and F-MSCs have been reported to harbor
strong immunomodulatory effects. While the data is still
scarce regarding F-MSCs, several differences in the
immune-suppressive properties between F-MSCs and
adult BMMSCs have been found. Future investigations
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on the molecular mechanisms underlying the immuno-
modulatory properties of both F-MSCs and adult
BMMSCs would be important since these differences
may have functional relevance to therapeutic use of both
sources of progenitor cells.
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