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Abstract

Background: The Cdc42-interacting protein-4, Trip10 (also known as CIP4), is a multi-domain adaptor protein
involved in diverse cellular processes, which functions in a tissue-specific and cell lineage-specific manner. We
previously found that Trip10 is highly expressed in estrogen receptor-expressing (ER*) breast cancer cells. Estrogen
receptor depletion reduced Trip10 expression by progressively increasing DNA methylation. We hypothesized that
Trip10 functions as a tumor suppressor and may be involved in the malignancy of ER-negative (ER) breast cancer.
To test this hypothesis and evaluate whether Trip10 is epigenetically regulated by DNA methylation in other
cancers, we evaluated DNA methylation of Trip10 in liver cancer, brain tumor, ovarian cancer, and breast cancer.

Methods: We applied methylation-specific polymerase chain reaction and bisulfite sequencing to determine the
DNA methylation of Trip10 in various cancer cell lines and tumor specimens. We also overexpressed Trip10 to
observe its effect on colony formation and in vivo tumorigenesis.

Results: We found that Trip10 is hypermethylated in brain tumor and breast cancer, but hypomethylated in liver
cancer. Overexpressed Trip10 was associated with endogenous Cdc42 and huntingtin in IMR-32 brain tumor cells
and CP70 ovarian cancer cells. However, overexpression of Trip10 promoted colony formation in IMR-32 cells and
tumorigenesis in mice inoculated with IMR-32 cells, whereas overexpressed Trip10 substantially suppressed colony

formation in CP70 cells and tumorigenesis in mice inoculated with CP70 cells.

Conclusions: Trip10 regulates cancer cell growth and death in a cancer type-specific manner. Differential DNA
methylation of Trip10 can either promote cell survival or cell death in a cell type-dependent manner.

Background

Tripl0 is a scaffold protein with F-BAR, ERM, and SH3
domains. Because these domains interact with diverse
signaling partners, Trip10 is involved in various cellular
processes including insulin-stimulated glucose uptake,
endocytosis, cytoskeleton arrangement, membrane invagi-
nation, proliferation, survival, and migration, in a tissue-
specific and cell lineage-specific manner. In adipocytes,
Trip10 increases glucose uptake by interacting with TC-
10 to regulate insulin-stimulated glucose transporter 4
(Glut4) translocation to the plasma membrane [1,2].
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However, in muscle cells, Trip10 inhibits glucose uptake
by increasing Glut4 endocytosis [3,4]. In natural killer
cells, Trip10 regulates actin cytoskeleton dynamics by
interacting with WASP protein [5,6], and regulates cyto-
toxicity by facilitating localization of microtubule organiz-
ing centers to immunological synapses [7]. Trip10 is also
a regulator or modulator of cell survival after DNA
damage [8] and in the human brain affected by Hunting-
ton’s disease [9]. Tripl0 expression is decreased in hepa-
tocyte growth factor/scatter factor (HGF/SF)-mediated
cell protection against DNA damage, but is significantly
increased during hyperbaric oxygen-induced neuroprotec-
tion [10]. On the other hand, overexpression of Tripl10
was observed in human Huntington’s disease brain stria-
tum, and neuronal Tripl0 immunoreactivity increased
with neuropathological severity in the neostriatum of
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Huntington’s disease patients [9]. In addition, rat striatal
neurons transfected with Tripl0 exhibited increased cell
death [9], suggesting that Trip10 is toxic to striatal neu-
rons. These data demonstrate that the function of Trip10
in cell survival and growth is cell lineage-specific. These
diverse and sometime opposing roles of Tripl0 may be
due in part to splicing variants, but equally important,
they could be the result of Tripl0 interaction with dis-
tinct signaling partners in different cell types.

Tripl0 also appears to be involved in tumorigenesis
and cancer progression. Enforced expression of Trip10
increases DNA damage-induced cell death in MDA-
MB-453 human melanoma cells and DU-145 human
prostate cancer cells [8]. However, Tripl0 overexpres-
sion enhances pancreatic cancer cell migration by
downregulating the antitumor function of ArgBP2,
suggesting that Tripl0 contributes to the malignancy
of pancreatic cancer [11]. In epidermoid carcinoma
cells, siRNA-mediated silencing of Trip10 strongly
increases epidermal growth factor receptor levels, sus-
tains extracellular signal-regulated kinase activation,
and promotes cell cycle progression into S phase [12],
which may contribute to excessive proliferation and
tumorigenesis. In Epstein-Barr virus-transformed lym-
phoblastoid cell lines, blocking the NF-xB pathway
induces apoptosis and suppresses Tripl10 [13], suggest-
ing that TripI0 activation is crucial for the prolifera-
tion and survival of lymphoblasts.

DNA methylation is an epigenetic mechanism that
regulates gene expression in response to intrinsic and
environmental signals under normal physiological condi-
tions (e.g., development) and pathologic conditions (e.g.,
cancer) [14-17]. A cohort of methyl CpG-binding pro-
teins is recruited specifically to methylated CpG sites,
where they repress transcription by limiting the access
of transcription factors to the promoter. DNA hyper-
methylation silences tumor suppressor genes in many
cancers, and the spreading of DNA hypermethylation
correlates positively with tumor progression. We pre-
viously reported that Tripl0 is an estrogen receptor
(ERa) downstream target and subject to hormone-
regulated epigenetic regulation [18]. In MCF7 cells, an
estrogen receptor-positive (ER") breast cancer cell line,
Tripl0 is strongly expressed. Loss of estrogen receptor
signaling gradually reduces Trip10 expression by trigger-
ing DNA methylation. Consistently, the Trip10 promo-
ter is hypermethylated in ER™ human breast tumors, but
not in ER" breast tumors.

To evaluate whether Trip10 function is regulated in a
lineage-dependent manner, we used methylation-specific
polymerase chain reaction (MSP) and bisulfite sequen-
cing to assess DNA methylation of Trip10 in human
primary tumor specimens and cell lines. We then over-
expressed human 77ip10 to evaluate its effect on colony
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formation and in vivo tumorigenesis in immunodeficient
mice. We found that Trip10 is differentially methylated
in different cancers. Overexpression of TripI10 increases
colony formation and tumorigenesis of IMR-32 cells,
but decreases colony formation and tumorigenesis of
CP70 cells. Taken together, our results show that
Trip10 expression in brain tumors, breast cancer, liver
cancer, and ovarian cancer is regulated by DNA methy-
lation, but the methylation level varies among these
cancer types. Trip10 functions as a tumor suppressor or
an oncogene, depending on the cell type in which it is
expressed.

Methods

Cell culture

IMR-32 neuroblastoma and U87 glioma cells were
grown in Dulbecco’s modified Eagle’s medium, CP70
ovarian carcinoma cells were grown in RPMI 1640,
MCF7 breast adenocarcinoma and HepG2 liver carci-
noma cells were grown in Minimum Essential Medium
(MEM), and MDA-MB-231 breast adenocarcinoma cells
were grown in Leibovitz’s L-15. All cell cultures were
supplemented with 10% fetal bovine serum, 2 mM
L-glutamine, and 100 pg/ml penicillin/streptomycin.
Human bone marrow-derived mesenchymal stem cell
(MSC) isolation and culture were performed as
described previously [19]. Expansion medium consisted
of MEM-a and 20% newborn calf serum supplemented
with 100 pg/ml penicillin/streptomycin and 2 mM
L-glutamine. Cells were allowed to adhere overnight at
37°C in 95% O,/5% CO,. Thereafter, the culture med-
ium was changed twice weekly. Cells were passaged at
90% confluence. All reagents were purchased from
Invitrogen.

Cloning of the human Trip10 promoter

Primer sequences for human Trip10 are listed in Addi-
tional File 1: Table S1. Total RNA from MDA-MB-231
cells was purified and reverse transcribed; the resulting
c¢DNA was used as template for PCR amplification. Puri-
fied PCR products were ligated into a cloning vector
(TOPO-TA cloning kit, Invitrogen), according to the
manufacturer’s protocol. Inserts were confirmed by
restriction digest analysis and sequencing. Trip10 was
then subcloned into the pcDNA3.1 vector for transfec-
tion (pcDNA-Tripl10).

Transfectio

The pcDNA-Trip10 plasmid (1 pg) was transfected into
IMR-32 and CP70 cells using DMRIE-C transfection
reagent (Invitrogen), according to the manufacturer’s
instructions. Empty vectors were transfected into control
cells as vehicle control. The antibiotic G418 (500 pg/ml)
was added to culture medium for stable clone selection.
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Bisulfite sequencing

Genomic DNA (0.5 pg) was treated with bisulfite
(Zymo), PCR-amplified, cloned, and sequenced as
described by Yan et al [20]. PCR primers are listed in
Additional File 1: Table S1.

Quantitative MSP

Quantitative MSP (qMSP) was performed as described
by Yan et al [20]. Universal methylated DNA (Millipore)
served as positive control, and Col2A1 as loading con-
trol. Primers for Col2A1 were used to amplify serial
dilutions (1/10, 1/100, and 1/1000) of control bisulfite-
converted genomic DNA to generate a standard curve
(Bio-Rad iQ5 real-time thermal cycler). The percentage
of methylation was calculated as (florescence intensity of
Trip10 amplification) x100%/(florescence intensity of
Col2A1 amplification). The 25-ul gMSP reaction contain
4 pl bisulfite-treated DNA template, 2 pl primers (each
primer mix, 2.5 uM), 12.5 pl reaction buffer (2x SYBR
Green real-time PCR Master Mix, Toyobo), and 6.5 pl
ddH2O. The PCR primers are listed in Additional File 1:
Table SI1.

Immunoblotting

Cell lysates were collected, and protein concentration
was determined with a protein assay kit (Bio-Rad) using
bovine serum albumin (BSA) as the standard. Proteins
(40 pg/lane) was separated by gel electrophoresis and
transferred to PVDF membrane. The membranes were
rinsed with Tris-buffered saline Tween 20 (TBST;
20 mM Tris, 500 mM NaCl, pH7.5, 0.05% Tween 20)
and blocked with 5% non-fat milk in TBST for 50 min
at room temperature. After rinsing with TBST, the
membrane was incubated with primary antibodies in
TBST overnight at 4°C. After rinsing with TBST, the
membrane was incubated with secondary antibodies for
45 min at room temperature, and then rinsed again with
TBST. Membranes were incubated with chemilumines-
cence reagent and exposed to x-ray film.

Immunoprecipitation

To evaluate the interactions of Tripl0 with endogenous
Cdc42 and huntingtin in IMR-32 cells and CP70 cells,
immunoprecipitation was carried out with the Catch
and Release immunoprecipitation kit (Upstate) accord-
ing to the manufacturer’s instructions.

Immunostaining

Cells were fixed in 2% formaldehyde in phosphate buf-
fered saline (PBS) and permeabilized in PBS containing
0.5% NP40. After blocking with horse serum (1:100 in
PBS), the cells were incubated with primary antibodies
in PBS with 3% BSA. After washing with PBS, the cells
were incubated with secondary antibodies in PBS with
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3% BSA. After several PBS washes, the slides
were mounted with mounting medium containing 4’,6-
diamidino-2-phenylindole (DAPL; Vector Laboratories).
The primary antibodies were anti-Cdc42 (BD Trans-
duction Laboratories), anti-huntingtin (Chemicon),
and anti-Tripl0 (Abcam). Fluorescein or Texas red-
conjugated anti-mouse or anti-rabbit IgG (Vector Labora-
tories) secondary antibodies were used for detection.

Soft agar assay

Soft agar was made with 0.5% bottom agar and 0.3% top
agar. After plating the bottom agar, cells were mixed
with top agar and plated (5 x 10%/well). After 2 weeks
of culture, cells were stained with 0.01% crystal violet,
and the spheres (> 50 cells) in each well was counted.

In vivo tumorigenesis

Mock-transfected or Trip10-overexpressing IMR-32 and
CP70 cells (1 x 107 cells) were subcutaneously injected
into 6-week-old nude mice (Narl:ICR-Foxnlnu).

Immunohistochemistry

Tumor masses were surgically removed from nude mice
inoculated with Trip10-overexpressing IMR-32 or CP70
cells. The tumor specimens were embedded in paraffin
and cut into 4-um sections or embedded in OCT and
cut into 12-pm sections on a cryostat (Leica). Sections
were stained with hematoxylin and eosin.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed as described by Jin et al [21].

Human subjects

Human cancer tissue collection followed IRB regulations
as mandated by ChangHua Christian Hospital, Taiwan.
Isolation and characterization of human MSCs were
conducted according to IRB regulations at Chang-Gung
Memorial Hospital, Taiwan.

Animal studies

The use of mice followed the regulations and protocols
reviewed and approved by the Institutional Animal Care
and Use Committee at National Chung Cheng
University.

Results

Trip10 is differentially methylated in human cancer cell
lines and primary tumor specimens

We first compared DNA methylation at the Trip10 pro-
moter and first exon in cancer cell lines and somatic
stem cells (MSCs) from normal human adults by bisul-
fite sequencing and qMSP. The Trip10 promoter was
either unmethylated or undermethylated in MSCs and
CP70 ovarian cancer cells as revealed by bisulfite
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sequencing, but the same sequence was moderately
methylated in breast cancer cells (MCF7 and MDA-MB-
231) and liver cancer cells (HepG2). Heavy methylation
was seen in brain tumor cells (IMR-32 and U87) (Figure
1A left, Additional File 1: Figure S1). Methylation of the
Tripl10 first exon determined by MSP was similar to the
pattern observed in the promoter region, in which
methylation was undetectable in MSCs, slightly methy-
lated in CP70, moderately methylated in MCF7, MDA-
MB-231 and HepG2 cells, but hypermethylated in
IMR-32 and U87 cells (Figure 1A right). In our previous
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study, expression of Tripl0 during MSC-to-lineage-
specific differentiation is also subjected to histone medi-
cations [22], thus promoter association with histone 3
lysine 4 trimethylation (H3K4me3, active histone mark)
and histone 3 lysine 27 trimethylation (H3K27me3,
repressive mark) were analyzed by chromatin immuno-
precipitation (ChIP). As shown in Figure 1B, all putative
ER, AML-1a, and CREB binding sites on TripI0 promo-
ter were enriched for H3K4me3, but not H3K27me3,
confirming that TripI0 expression is regulated by
both DNA methylation and histone modification.
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Figure 1 Epigenetic regulation of Trip10. (A) Bisulfite sequencing (left) and gMSP (right) shows TripP10 methylation in various cancer cell lines.
CpG locations are indicated as vertical bars in the promoter and first exon of Trip10 (top). Arrows mark the location of MSP primers. Open circles
indicate unmethylated CpG sites, and circles filled to varying degrees reveal the percentage of methylation at specific CpG sites. Results of eight
clones from each cell line are presented. For gMSP, Col2AT was used as loading control. (B) H3K4me3 and H3K27me3 association at Trip10
promoter were demonstrated by ChIP analysis. CREB, AML-1a, and ER transcription factor binding sites are shown with individual CpG sites
(short vertical bars). Arrows indicate the bisulfite sequencing region shown in (A). All three transcription factor binding sites were associated with
H3K4me3, but not H3K27me3. (C) DNA demethylation. IMR-32 cells treated with 5-Aza (20 uM) or DMSO (vehicle) were analyzed by gMSP and
gRT-PCR. Col2AT served as loading control for gMSP, and GAPDH served as loading control for gRT-PCR.
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A comparison of endogenous Tripl0 mRNA expression
in these tested cell lines is correspondingly shown in
Additional File 1: Figure S2A. To further evaluate the
role of DNA methylation, IMR-32 cells were treated
with 5-aza-2’-deoxycytidine (5-Aza), which appeared to
suppress DNA methylation in GSTpI and slightly
decrease Tripl10 DNA methylation in the first exon
region (Figure 1C upper panel). In a good support
of the MSP results, Tripl0 mRNA levels were increased
by 5-Aza in IMR-32 cells as compared to controls
(Figure 1C lower panel), demonstrating that the Trip10
expression is regulated epigenetically and differentially
by both DNA methylation and histone modification in a
cell type-specific manner.

To determine Tripl10 methylation in vivo, we exam-
ined Tripl0 promoter methylation in human breast
cancer and liver cancer specimens and adjacent non-
tumor tissues. As illustrated in Figure 2T7ripl10 was
hypermethylated in breast cancer (Figure 2A), but hypo-
methylated in liver cancer (Figure 2B). Together, these
data demonstrate that Tripl0 is subject to epigenetic
modification by DNA methylation in breast cancer and
liver cancer tumorigenesis. Aberrant DNA methylation
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of Tripl10 occurs in vivo and may contribute to neo-
plasm development.

Trip10 interacts with Cdc42 and huntingtin in both IMR-
32 and CP70 cells

Because Tripl0 is differentially methylated in different
types of cancer (Figure 1), we speculated that Trip10
functions in cell type-specific manner. Trip10 was thus
cloned and overexpressed in IMR-32 and CP70 cells.
Consistent with the gMSP results, endogenous Trip10
protein was undetectable in control IMR-32 cells by
Western blot (Figure 3A, top), but weakly expressed in
control CP70 cells (Figure 3B, top). Immunoprecipita-
tion experiments showed that Cdc42, but not hunting-
tin, was expressed in IMR-32 cells (Figure 3A, center).
In contrast, huntingtin was highly expressed in CP70
cells, whereas Cdc42 was expressed at low levels (Figure
3B, center). Overexpression of the Trip10 gene substan-
tially increased cytosolic Tripl0 protein and mRNA
levels in both cell types (Figure 3 bottom, Additional
File 1: Figure S2B). Moreover, huntingtin and Cdc42
were increased as well. Immunostaining results support
the immunoprecipitation findings (Figure 3 bottom).
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Figure 3 Trip10 interacts with both Cdc42 and huntingtin (HD) and shows cell type-specific localization. Trip10 was cloned and
transfected into (A) IMR-32 cells and (B) CP70 cells; individual colonies were selected and analyzed by Western blot (top panels). Interactions of
Trip10 with Cdc42 and HD were analyzed by immunoprecipitation. After immunoprecipitation of Trip10, the protein complex was probed with
Cdc42 and HD antibodies (middle panels). Immunostaining (bottom panels) show the distribution of Trip10 and HD. Vehicle: empty vector only;

Ctrl: transfection agent only.

These results demonstrate that Tripl0 associates with
Cdc42 and huntingtin in IMR-32 cells and CP70 cells,
but the differential expression of these proteins may
lead to activation of different signalling pathways.

Trip10 promotes or suppresses in vitro colony formation
and in vivo tumorigenesis in a cell type-dependent
manner

Because Tripl0 has been reported to regulate diverse
functions and is differentially expressed in IMR-32 and
CP70 cells, we next investigated the effects of overex-
pressed Tripl0 in cell proliferation and survival. The
soft agar assay was performed to evaluate in vitro colony
formation. Overexpression of Tripl0 promoted colony
formation in IMR-32 cells (Figure 4A), but strongly
inhibited colony formation in CP70 cells (Figure 4B).
Both control and Trip10-overexpressing cells were then

inoculated into nude mice to determine the in vivo
effect of Tripl10 on tumorigenesis. Consistent with
results from the colony formation assay, IMR-32 cells
overexpressing Tripl10 formed tumors, some of which
metastasized. In contrast, mice inoculated with control
CP70 cells rapidly developed tumors, but tumors were
not detected in mice inoculated with Tripl0-overexpres-
sing CP70 cells. These data demonstrate that Tripl0 can
either promote or inhibit tumorigenesis depending on
the cell type in which it resides.

In Figure 3 we have demonstrated that Trip10 differ-
entially associates with Cdc42 and huntingtin in IMR-32
cells and CP70 cells, we speculated that the differential
expression of these proteins may lead to activation of
different signalling pathways and contribute to the
opposite oncogenic and tumor suppressive effect of
Tripl0. Because PI3K/Akt and MAPK pathways are
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often aberrantly activated in tumor cells, and they are
reported to be associated with Cdc42 and huntingtin
[12,23-25], thus we performed qRT-PCR to determine
the mRNA expression of Akt and MAPKI4 (encoding
p38 MAPK) in Tripl0-overexpressed CP70 and IMR-32
cells. Expression of Aktl, Akt2, and MAPKI14 were ele-
vated in Tripl0-overexpressed cells, and the expression
levels of these signalling components exhibited a posi-
tive correlation with endogenous Trip10 expression, in
which more endogenous Tripl0 expression is associated
with greater Aktl, Akt2, and MAPKI4 expression in
CP70 cells as compared to the IMR-32 cells (Additional
File 1: Figure S2B). Interestingly, Akt3 expression is

much lower in CP70 than in IMR-32 cells, furthermore,
overexpression of Tripl0 increased Akt3 expression in
IMR-32 cells, but not in CP70 cells. These data imply
that distinct signalling components may have profound
effect in the cell type-specific functions of Trip10.

Discussion

Trip10 was initially identified as a Cdc42-interacting
protein involved in GLUT4-mediated glucose uptake in
adipocytes and muscle cells, but Trip10 is now known
to have diverse functions in wide variety of cell types.
We previously identified Trip10 as an ERa target gene
[21]. In ER" breast tumor cells, DNA methylation of
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Tripl0 was not detectable; however, disrupting ER sig-
nalling caused a time-dependent increase in DNA
methylation of Trip10 and reduced mRNA levels [18].
Trip10 is consistently unmethylated in ER" breast
tumors but hypermethylated in ER™ breast tumors.
Because ER" breast cancer is generally more malignant
than ER" breast cancer, these data suggest that Trip10
hypermethylation promotes tumorigenesis. In the pre-
sent study, we report that Tripl10 expression is epigen-
etically regulated by DNA methylation and histone
modification in a cell type-specific manner. Among the
cell lines we examined, the DNA methylation level of
Trip10 (from highest to lowest) was: brain tumor cells
(IMR-32 and U87) > breast tumor cells (MCF7 and
MDA-MB-231) > liver cancer cells (HepG2) > ovarian
cancer cells (CP70) > MSCs (Figure 1A). Similar methy-
lation patterns were observed in tumor specimens,
Trip10 was hypermethylated in breast cancer but hypo-
methylated in liver cancer compared to adjacent non-
tumor tissues (Figure 2). Interestingly, while the Trip10
promoter was methylated in IMR-32, MDA-MB-231,
and HepG2 cells, several putative transcription factor
binding sites (ER, AML-a, and CREB) were enriched for
H3K4me3, association with H3K27me3 was contrarily
low (Figure 1B). The expression levels of endogenous
TripI10 mRNA in these cell lines (Additional File 1: Fig-
ure S2A) suggest that DNA methylation may interfere
with H3K4me3 binding to the Trip10 promoter in these
cells.

Functional assays reveal that Tripl0 plays opposing
roles in IMR-32 and CP70 cells, which may be due to
differential expression of its interaction partners, thus
activating different signalling pathways. The cellular
localization of Trip10 also varies depending on the cell
type. In COS7 and human macrophages, Tripl0 is
widely distributed in the cell in a “meshwork-like struc-
ture” [6]. In a skeletal muscle cell line, endogenous
Tripl0 is found in both the cytosol and perinuclear
space, and its expression level is similar in immature
myoblasts and differentiated myotubes [3]. In human
brains, immunoexpression of Tripl0 is detected in the
nucleus and cytoplasm of neurons, activity and nuclear
distribution are higher with more severe Huntington’s
disease [9].

In the present study, Tripl0 was only sporadically in
the cytosol and perinuclear region of IMR-32 control
cells, but was more evenly distributed in the cytosol of
CP70 control cells (Figure 3 immunostaining). Overex-
pression of Trip10 in IMR-32 cells caused Tripl0 and
huntingtin to colocalize and form perinuclear foci. In
contrast, while overexpression of Tripl0 in CP70 cells
also increased huntingtin levels, both proteins remained
in the cytosol without apparent foci formation. Western
blot and immunoprecipitation studies revealed that both
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IMR-32 and CP70 cells express huntingtin and Cdc42,
but Cdc42 was more strongly expressed in IMR-32 cells
(Figure 3A), whereas huntingtin was more strongly
expressed in CP70 cells (Figure 3B), even when TripI0
was overexpressed. Cdc42 is involved in migration;
therefore, strong Cdc42 expression in IMR-32 cells may
cause them to become more invasive, possibly explain-
ing the enhanced in vitro colony formation and in vivo
tumorigenesis and metastasis in mice inoculated with
Tripl10-overexpressing IMR-32 cells (Figure 4A). On the
other hand, huntingtin increases cell death by promot-
ing apoptosis. Thus, high levels of huntingtin in Trip10-
overexpressing CP70 cells may lead to cell death, as
shown by the lower rates of colony formation and
tumorigenesis (Figure 4B).

Dysregulated signalling pathway is a key factor contri-
buting to tumorigenesis and progression. In the present
study, we found expression of endogenous Aktl, Akt2
and p38 correlates with endogenous Tripl0 expression,
in which greater Trip10 expression in CP70 cells is
accompanied with more Akz1/2 and p38 expression in
this cell type. Overexpression of TripI10 leads to conco-
mitantly up-regulation of Akt1/2 and p38 in both cell
types, implicating that both PI3K/Akt and p38 MAPK
pathways are involved in Tripl0-mediated cellular beha-
viours. Interestingly, Akt3 exhibits a distinct expression
pattern. Expression of Akz3 mRNA is higher in IMR-32
cells as compared to CP70 cells. Overexpression of
Tripl10 only promotes Akt3 expression in IMR-32 cells
but not in CP70, implicating that Akt3 may not be a
key signalling component in CP70 cells, but may be
important for tumorigenesis of IMR-32 cells. On the
other hand, because amplification of Akt3 has also been
reported in glioblastoma [26], we reason that elevated
Akt3 expression may be crucial for brain tumor forma-
tion and progression. Functional studies of the three
Akt family members have revealed that they are not
redundant and each fulfills unique roles [27]. Thus lack
of Akt3 expression along with high level of endogenous
huntingtin in CP70 cells may be the determinant factors
of Tripl0-induced tumor suppression. In contrast,
amplified Akt3 and Cdc42 may collaborate with Trip10
to trigger tumorigenesis In IMR-32 cells.

We do not rule out the possibility that specific iso-
forms of Tripl0 are active in different cell types. In adi-
pocytes, inactive Tripl0 (CIP4/2) decreases Glut4
translocation to the plasma membrane [2], whereas in
skeletal muscle cells, depletion of Tripl0 (CIP4a)
enhances insulin-stimulated glucose uptake by suppres-
sing Glut4 endocytosis [3]. This difference can be
explained, in part, by the fact that CIP4a does not con-
tain the TC10-binding domain. Therefore, the differen-
tial effects of Tripl0 in IMR-32 cells and CP70 cells
may result from different isoforms in these two cell
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types, which recruit different interacting proteins. On
the other hand, Tripl0 directly interacts with WASP
family verprolin-homologous protein (WAVEL) in a
pancreatic cancer cell line and enhances its phosphory-
lation by the cytosolic tyrosine kinase c-Abl [11]. Trip10
itself is also subject to phosphorylation by c-Abl and
dephosphorylation protein tyrosine phosphatase contain-
ing a PEST domain (PTP-PEST) [11]. Thus IMR-32 and
CP70 cells may be equipped with different signaling
pathways to regulate Trip10 activity and function.

Taken together, our data demonstrate that Trip10
expression is regulated by both DNA methylation and
H3K4me3. Tripl0 can enhance tumorigenesis or act as
tumor suppressor depending on the cell type in which it
is expressed.

Conclusions

Here we report that Trip10 is differentially methylated
in different types of cancer cell lines and tumors. Analy-
sis of histone modification in MDA-MB-231, HepG2,
and IMR-32 cells demonstrated that Trip10 is associated
with H3K4me3, but not H3K27me3. Tripl0 can be
oncogenic or tumor suppressive, increasing IMR-32 cell
proliferation and inhibiting CP70 cell proliferation. The
cell type-specific effect may be due, in part, to different
cellular signalling partners recruited by Trip10.
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